

 [image: Free Software, Free Society. Selected Essays of Richard M. Stallman, Third Edition.]

 Free Software, Free Society

 Selected Essays of Richard M. Stallman

 Third Edition

 Richard M. Stallman

 Copyright Notice

This is the third edition of Free Software, Free Society: Selected Essays of Richard
M. Stallman.

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1335

Copyright © 2002, 2010, 2015 Free Software Foundation, Inc.

 Verbatim copying and distribution of this entire book are permitted
 worldwide, without royalty, in any medium, provided this notice is
 preserved. Permission is granted to copy and distribute translations
 of this book from the original English into another language
 provided the translation has been approved by the Free Software
 Foundation and the copyright notice and this permission notice are
 preserved on all copies.

ISBN 978-0-9831592-6-1

Cover design and photograph by Kyle Winfree.

Table of Contents

 	Copyright Notice

 	Foreword to the Third Edition

 	Foreword to the First Edition

 	Preface

 	
 Part I: The GNU Project and Free Software

 	What Is Free Software?

 	The GNU Project

 	The Initial Announcement of the GNU Operating System

 	Free Software Is Even More Important Now

 	Why Schools Should Exclusively Use Free Software

 	Measures Governments Can Use to Promote Free Software

 	Why Free Software Needs Free Documentation

 	Selling Free Software

 	Free Hardware and Free Hardware Designs

 	Applying the Free Software Criteria

 	
 Part II: What’s in a Name?

 	What’s in a Name?

 	Linux and the GNU System

 	Categories of Free and Nonfree Software

 	Why Open Source Misses the Point of Free Software

 	Did You Say “Intellectual Property”? It’s a Seductive Mirage

 	Why Call It the Swindle?

 	Words to Avoid (or Use with Care) Because They Are Loaded or Confusing

 	
 Part III: Copyright and Injustice

 	The Right to Read

 	Misinterpreting Copyright—A Series of Errors

 	Science Must Push Copyright Aside

 	Copyright vs. Communityin the Age of Computer Networks

 	
 Part IV: Software Patents: Danger to Programmers

 	Software Patents and Literary Patents

 	The Danger of Software Patents

 	Giving the Software Field Protection from Patents

 	
 Part V: Free Software Licensing

 	Introduction to the Licenses

 	How to Choose a License for Your Own Work

 	The X Window System Trap

 	Programs Must Not Limit the Freedom to Run Them

 	What Is Copyleft?

 	Why Copyleft?

 	Copyleft: Pragmatic Idealism

 	The GNU General Public License

 	Why Upgrade to GPLv3

 	The GNU Lesser General Public License

 	GNU Free Documentation License

 	On Selling Exceptions to the GNU GPL

 	
 Part VI: Traps and Challenges

 	Can You Trust Your Computer?

 	The JavaScript Trap

 	Releasing Free Software If You Work at a University

 	Nonfree DRM’d Games on GNU/Linux: Good or Bad?

 	The Danger of E-Books

 	E-books Must Increase Our Freedom, Not Decrease It

 	Who Does That Server Really Serve?

 	
 Part VII: Value Community and Your Freedom

 	Avoiding Ruinous Compromises

 	Overcoming Social Inertia

 	Freedom or Power?

 	Imperfection Is Not the Same as Oppression

 	How Much Surveillance Can Democracy Withstand?

 	
 Appendices

 	A: A Note on Software

 	B: Translations of “Free Software” and “Gratis Software”

 	C: The Free Software Song

 Quick Links

 	Copyright Notice

 	Foreword to the Third Edition

 	Foreword to the First Edition

 	Preface

 	Free Software, Free Society

 	Part I: The GNU Project and Free Software

 	Part II: What’s in a Name?

 	Part III: Copyright and Injustice

 	Part IV: Software Patents: Danger to Programmers

 	Part V: Free Software Licensing

 	Part VI: Traps and Challenges

 	Part VII: Value Community and Your Freedom

 	Appendices

 Foreword to the Third Edition

 Copyright © 2015 Free Software Foundation, Inc.
 This is the foreword to Free Software, Free Society: Selected Essays of Richard M. Stallman,
3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

A love
letter to Richard Stallman, by Jacob Appelbaum

We live in information societies where machines intermediate our lives.

 Software and hardware are as important to our information age as the internet
itself. Free Software is the political theory born from the mind of a revolutionary
who believes that, just as we should have control over our own lives, we should
also be able to understand and control the machines that are extensions of
ourselves. This theory, as supported by the Free Software Foundation, has
become a practice and a tradition for millions of people over the last three
decades.

 Free Software as a political theory acknowledges the role of software and
hardware systems in our societies. Critiquing past and present systems is necessary.
We may find ourselves unable to understand or modify these systems. We become
beholden to others in ways that produce injustices and are themselves an injustice.
The outcomes of these systems are not always obvious, particularly when one is
forced into using them, and especially when they are normalized and branded as
the standard. Free Software as a practice is not merely a critique: it is an
alternative that provides liberty, resting on free standards, freely available to
all.

 Free Software is a paradigm shift where we are at liberty to understand and
learn from those who have come before us, where we are free to grow and share, to
learn from mistakes, to benefit as we learn, and to share those benefits with
everyone. When we use copyleft, we ensure that all future users of our work get the
same liberty. Free Software ensures that future generations will also be able to
decode entire histories of data. It ensures not only our liberties, but theirs as

well.

 In times of mass surveillance, Free Software brings much needed transparency
and with it verifiability. Free Software enables us to encrypt, to ensure integrity, to
authorize, and to anonymize ourselves. In a world of ever increasing privatization,
we find in Free Software a pillar of communal action towards free societies. The
benefits of Free Software are impossible to fully enumerate as they vary as much
as the benefits of liberty itself. Advancing the cause of Free Software is
never ending, like all struggles for justice, and requires eternal vigilance.
Advancing the cause of Free Software is difficult, and those advocating and
implementing Free Software are often carrying essential ideas forward against all
odds.

 The efforts invested in Free Software are not merely about knowledge,
they are about empowerment: empowerment to study, empowerment to
modify, empowerment to share, and empowerment to enable sharing with
others. Commitment to liberty in an information age requires a refusal to
compromise on the core principles of Free Software, with a commitment and
honesty that demands sacrifice. Many may refuse this burden, working only to
enrich themselves in the present moment; others will work to increase the
breadth and depth of human knowledge. Implemented as Free Software,
we find a model of sustainability and long-term vision that increases not
only knowledge but practical direct ability freely shared for all without
exception. This is a worthy cause and its thoughtfulness has already enabled
all of us; from the mundane to the most extraordinary, Free Software is
involved.

 Richard Stallman is the revolutionary and theorist who has given the world
Free Software. His essays cover topics that have been essential reading for
decades, widely read and understood by people creating systems for our
information age and beyond. He has dedicated his life to the liberation of
humanity, and this book explains how we might each help with this cause of
liberation.

 Jacob Appelbaum

 Jacob Appelbaum is an independent computer-security researcher, journalist and artist.
He is a co-founder of Noisebridge, a Debian GNU/Linux developer, a core member of
the Tor Project, allegedly a WikiLeaks co-conspirator, and has collaborated on several
high-profile research projects. Because of his political views and the recognition he’s received
in each of his fields of endeavor, he has been repeatedly targeted and detained by US
law enforcement agencies. By birth an American, he works and lives in exile in Berlin.

 Foreword to the First Edition

 Copyright © 2002 Free Software Foundation, Inc.
 This foreword was originally published, in 2002, as the introduction to the first edition. This, the
original version, is part of Free Software, Free Society: Selected Essays of Richard M. Stallman,
3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Every
generation has its philosopher—a writer or an artist who captures the imagination
of a time. Sometimes these philosophers are recognized as such; often it takes
generations before the connection is made real. But recognized or not, a time gets
marked by the people who speak its ideals, whether in the whisper of a poem, or the
blast of a political movement.

 Our generation has a philosopher. He is not an artist, or a professional
writer. He is a programmer. Richard Stallman began his work in the labs of
MIT, as a programmer and architect building operating system software.
He has built his career on a stage of public life, as a programmer and an
architect founding a movement for freedom in a world increasingly defined by
“code.”

 “Code” is the technology that makes computers run. Whether inscribed
in software or burned in hardware, it is the collection of instructions,
first written in words, that directs the functionality of machines. These
machines—computers—increasingly define and control our life. They determine how
phones connect, and what runs on TV. They decide whether video can be streamed
across a broadband link to a computer. They control what a computer
reports back to its manufacturer. These machines run us. Code runs these
machines.

 What control should we have over this code? What understanding? What
freedom should there be to match the control it enables? What power?

 These questions have been the challenge of Stallman’s life. Through his works
and his words, he has pushed us to see the importance of keeping code
“free.” Not free in the sense that code writers don’t get paid, but free in the
sense that the control coders build be transparent to all, and that anyone
have the right to take that control, and modify it as he or she sees fit.
This is “free software”; “free software” is one answer to a world built in
code.

 “Free.” Stallman laments the ambiguity in his own term. There’s nothing to
lament. Puzzles force people to think, and this term “free” does this puzzling work
quite well. To modern American ears, “free software” sounds utopian, impossible.
Nothing, not even lunch, is free. How could the most important words running the
most critical machines running the world be “free.” How could a sane society aspire
to such an ideal?

 Yet the odd clink of the word “free” is a function of us, not of the term.
“Free” has different senses, only one of which refers to “price.” A much
more fundamental sense of “free” is the “free,” Stallman says, in the term
“free speech,” or perhaps better in the term “free labor.” Not free as in
costless, but free as in limited in its control by others. Free software is control
that is transparent, and open to change, just as free laws, or the laws of a
“free society,” are free when they make their control knowable, and open
to change. The aim of Stallman’s “free software movement” is to make as
much code as it can transparent, and subject to change, by rendering it
“free.”

 The mechanism of this rendering is an extraordinarily clever device called
“copyleft” implemented through a license called GPL. Using the power
of copyright law, “free software” not only assures that it remains open,
and subject to change, but that other software that takes and uses “free
software” (and that technically counts as a “derivative”) must also itself
be free. If you use and adapt a free software program, and then release
that adapted version to the public, the released version must be as free as
the version it was adapted from. It must, or the law of copyright will be
violated.

 “Free software,” like free societies, has its enemies. Microsoft has waged a war
against the GPL, warning whoever will listen that the GPL is a “dangerous” license.
The dangers it names, however, are largely illusory. Others object to the “coercion”
in GPL’s insistence that modified versions are also free. But a condition is not
coercion. If it is not coercion for Microsoft to refuse to permit users to distribute
modified versions of its product Office without paying it (presumably) millions, then
it is not coercion when the GPL insists that modified versions of free software be
free too.

 And then there are those who call Stallman’s message too extreme. But extreme
it is not. Indeed, in an obvious sense, Stallman’s work is a simple translation of the
freedoms that our tradition crafted in the world before code. “Free software” would
assure that the world governed by code is as “free” as our tradition that built the

world before code.

 For example: A “free society” is regulated by law. But there are limits that any
free society places on this regulation through law: No society that kept its laws
secret could ever be called free. No government that hid its regulations from the
regulated could ever stand in our tradition. Law controls. But it does so justly
only when visibly. And law is visible only when its terms are knowable and
controllable by those it regulates, or by the agents of those it regulates (lawyers,
legislatures).

 This condition on law extends beyond the work of a legislature. Think about the
practice of law in American courts. Lawyers are hired by their clients to
advance their clients’ interests. Sometimes that interest is advanced through
litigation. In the course of this litigation, lawyers write briefs. These briefs in
turn affect opinions written by judges. These opinions decide who wins a
particular case, or whether a certain law can stand consistently with a
constitution.

 All the material in this process is free in the sense that Stallman means. Legal
briefs are open and free for others to use. The arguments are transparent (which is
different from saying they are good) and the reasoning can be taken without the
permission of the original lawyers. The opinions they produce can be quoted
in later briefs. They can be copied and integrated into another brief or
opinion. The “source code” for American law is by design, and by principle,
open and free for anyone to take. And take lawyers do—for it is a measure
of a great brief that it achieves its creativity through the reuse of what
happened before. The source is free; creativity and an economy is built upon
it.

 This economy of free code (and here I mean free legal code) doesn’t starve
lawyers. Law firms have enough incentive to produce great briefs even though the
stuff they build can be taken and copied by anyone else. The lawyer is a craftsman;
his or her product is public. Yet the crafting is not charity. Lawyers get paid; the
public doesn’t demand such work without price. Instead this economy flourishes,
with later work added to the earlier.

 We could imagine a legal practice that was different—briefs and arguments that
were kept secret; rulings that announced a result but not the reasoning. Laws that
were kept by the police but published to no one else. Regulation that operated
without explaining its rule.

 We could imagine this society, but we could not imagine calling it “free.”
Whether or not the incentives in such a society would be better or more efficiently
allocated, such a society could not be known as free. The ideals of freedom, of life
within a free society, demand more than efficient application. Instead, openness and
transparency are the constraints within which a legal system gets built, not options
to be added if convenient to the leaders. Life governed by software code should be
no less.

 Code writing is not litigation. It is better, richer, more productive. But the law
is an obvious instance of how creativity and incentives do not depend upon perfect
control over the products created. Like jazz, or novels, or architecture, the law gets
built upon the work that went before. This adding and changing is what creativity

always is. And a free society is one that assures that its most important resources
remain free in just this sense.

 This book collects the writing and lectures of Richard Stallman in a manner that
will make their subtlety and power clear. The essays span a wide range, from
copyright to the history of the free software movement. They include many
arguments not well known, and among these, an especially insightful account of the
changed circumstances that render copyright in the digital world suspect. They will
serve as a resource for those who seek to understand the thought of this most
powerful man—powerful in his ideas, his passion, and his integrity, even if powerless
in every other way. They will inspire others who would take these ideas, and build
upon them.

 I don’t know Stallman well. I know him well enough to know he is a hard man to
like. He is driven, often impatient. His anger can flare at friend as easily as foe. He
is uncompromising and persistent; patient in both.

 Yet when our world finally comes to understand the power and danger of
code—when it finally sees that code, like laws, or like government, must be
transparent to be free—then we will look back at this uncompromising and
persistent programmer and recognize the vision he has fought to make real:
the vision of a world where freedom and knowledge survives the compiler.
And we will come to see that no man, through his deeds or words, has
done as much to make possible the freedom that this next society could
have.

 We have not earned that freedom yet. We may well fail in securing it.
But whether we succeed or fail, in these essays is a picture of what that
freedom could be. And in the life that produced these words and works,
there is inspiration for anyone who would, like Stallman, fight to create this
freedom.

 Lawrence Lessig

 Lawrence Lessig is a Professor of Law at Harvard Law School, the director of the Edmond
J. Safra Foundation Center for Ethics, and the founder of Stanford Law School’s Center for
Internet and Society. For much of his career, he focused his work on law and technology,
especially as it affects copyright. He is the author of numerous books and has served
as a board member of many organizations, including the Free Software Foundation.

 Preface

 The third edition of Free Software, Free Society holds updated versions of most
of the essays from the second edition, as well as many new essays. A third of the
essays are new.

 As it was in previous editions, the initial section of the book is devoted to the
principles and philosophy of free software. It includes a more powerful presentation
of why software ought to be free, an explanation of how our principles determine
our practical decisions, and addresses the question of freedom and hardware
designs.

 The way we name and frame an issue affects how we think about it. Companies
choose terminology to promote their framing; to accept that is to support them.
Thus, this edition has new material about how we at the FSF name things and
why.

 The copyright section now presents a transcript of a speech that discusses the
overall issue of copyright law and how it should be changed.

 The patents section proposes a solution for the problem caused by patents in the
computing field. I’ve kept essays about patents separate from those about copyright,
since the two issues should not be lumped together.

 The licensing section is largely unchanged, still presenting the GNU licenses,
with an introduction written with Brett Smith giving their history and the motives
for each of them, and an essay explaining why software projects should upgrade to
version 3 of the GNU General Public License.

 This edition continues to address dangers and traps that the free software
community faces, including now the issues of nonfree games, e-books, and the
growing threat of digital surveillance.

 I hope this book can show you how you might lose your freedom, teach you how
to protect it, and inspire you to value it.

 Thank you to Jeanne Rasata for managing the project, editing the book,

formatting the text, and creating the index. Thanks also to Karl Berry for technical
assistance with Texinfo, and Kyle Winfree for designing and formatting the
cover.

 Richard Stallman

 Part I
Part I: The GNU Project and Free Software

 1 What Is Free Software?

 2 The GNU Project

 3 The Initial Announcement of the GNU Operating System

 4 Free Software Is Even More Important Now

 5 Why Schools Should Exclusively Use Free Software

 6 Measures Governments Can Use to Promote Free Software

 7 Why Free Software Needs Free Documentation

 8 Selling Free Software

 9 Free Hardware and Free Hardware Designs

 10 Applying the Free Software Criteria

 Chapter 1
What Is Free Software?

Copyright © 1996–2002, 2004–2007, 2009–2015 Free Software Foundation, Inc.
 The free software definition was first published in 1996, on http://gnu.org. This version is part
of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU
Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 The Free Software Definition

 The free software definition presents the criteria for whether a particular
 software program qualifies as free software. From time to time we
 revise this definition, to clarify it or to resolve questions about subtle
 issues. For a list of the changes we’ve made to the definition of free
 software, please see the “History” section, following the definition, at
 http://gnu.org/philosophy/free-sw.html.

“Free software” means software that respects users’ freedom and community.
Roughly, it means that the users have the freedom to run, copy, distribute,
study, change and improve the software. Thus, “free software” is a matter of
liberty, not price. To understand the concept, you should think of “free” as in “free
speech,” not as in “free beer.” We sometimes call it “libre software” to show we do
not mean it is gratis.

 We campaign for these freedoms because everyone deserves them. With these
freedoms, the users (both individually and collectively) control the program and
what it does for them. When users don’t control the program, we call it a “nonfree”
or “proprietary” program. The nonfree program controls the users, and the

developer controls the program; this makes the program an instrument of unjust
power. [1]

 A program is free software if the program’s users have the four essential
freedoms:

 	The freedom to run the program as you wish, for any purpose
 (freedom 0).

 	The freedom to study how the program works, and change it so it does
 your computing as you wish (freedom 1). Access to the source code is a
 precondition for this.

 	The freedom to redistribute copies so you can help your neighbor
 (freedom 2).

 	The freedom to distribute copies of your modified versions to others
 (freedom 3). By doing this you can give the whole community a chance
 to benefit from your changes. Access to the source code is a precondition
 for this.

 A program is free software if it gives users adequately all of these freedoms.
Otherwise, it is nonfree. While we can distinguish various nonfree distribution
schemes in terms of how far they fall short of being free, we consider them all
equally unethical.

 In any given scenario, these freedoms must apply to whatever code we plan
to make use of, or lead others to make use of. For instance, consider a
program A which automatically launches a program B to handle some cases. If
we plan to distribute A as it stands, that implies users will need B, so
we need to judge whether both A and B are free. However, if we plan to
modify A so that it doesn’t use B, only A needs to be free; we can ignore
B.

 The rest of this page clarifies certain points about what makes specific freedoms
adequate or not.

 Freedom to distribute (freedoms 2 and 3) means you are free to redistribute
copies, either with or without modifications, either gratis or charging a fee
for distribution, to anyone anywhere. Being free to do these things means
(among other things) that you do not have to ask or pay for permission to do
so.

 You should also have the freedom to make modifications and use them privately
in your own work or play, without even mentioning that they exist. If you do
publish your changes, you should not be required to notify anyone in particular, or
in any particular way.

 The freedom to run the program means the freedom for any kind of person or
organization to use it on any kind of computer system, for any kind of overall job
and purpose, without being required to communicate about it with the developer or
any other specific entity. In this freedom, it is the user’s purpose that matters, not
the developer’s purpose; you as a user are free to run the program for your
purposes, and if you distribute it to someone else, she is then free to run
it for her purposes, but you are not entitled to impose your purposes on
her.

 The freedom to run the program as you wish means that you are not forbidden
or stopped from doing so. It has nothing to do with what functionality the program
has, or whether it is useful for what you want to do.

 The freedom to redistribute copies must include binary or executable forms of
the program, as well as source code, for both modified and unmodified versions.
(Distributing programs in runnable form is necessary for conveniently installable
free operating systems.) It is OK if there is no way to produce a binary or
executable form for a certain program (since some languages don’t support that
feature), but you must have the freedom to redistribute such forms should you find
or develop a way to make them.

 In order for freedoms 1 and 3 (the freedom to make changes and the freedom to
publish the changed versions) to be meaningful, you must have access to the source
code of the program. Therefore, accessibility of source code is a necessary condition
for free software. Obfuscated “source code” is not real source code and does not
count as source code.

 Freedom 1 includes the freedom to use your changed version in place of the
original. If the program is delivered in a product designed to run someone else’s
modified versions but refuse to run yours—a practice known as “tivoization”
or “lockdown,” or (in its practitioners’ perverse terminology) as “secure
boot”—freedom 1 becomes an empty pretense rather than a practical reality. These
binaries are not free software even if the source code they are compiled from is
free.

 One important way to modify a program is by merging in available free
subroutines and modules. If the program’s license says that you cannot merge in a
suitably licensed existing module—for instance, if it requires you to be the copyright
holder of any code you add—then the license is too restrictive to qualify as
free.

 Freedom 3 includes the freedom to release your modified versions as free
software. A free license may also permit other ways of releasing them; in
other words, it does not have to be a copyleft license. However, a license
that requires modified versions to be nonfree does not qualify as a free
license.

 In order for these freedoms to be real, they must be permanent and
irrevocable as long as you do nothing wrong; if the developer of the software
has the power to revoke the license, or retroactively add restrictions to its
terms, without your doing anything wrong to give cause, the software is not
free.

 However, certain kinds of rules about the manner of distributing free software

are acceptable, when they don’t conflict with the central freedoms. For example,
copyleft (very simply stated) is the rule that when redistributing the program,
you cannot add restrictions to deny other people the central freedoms.
This rule does not conflict with the central freedoms; rather it protects
them.

 In the GNU Project, we use copyleft to protect the four freedoms legally for
everyone. We believe there are important reasons why it is better to use copyleft.
However, noncopylefted free software is ethical too. See “Categories of Free
Software” ([link]) for a description of how “free software,” “copylefted software” and
other categories of software relate to each other.

 “Free software” does not mean “noncommercial.” A free program must be
available for commercial use, commercial development, and commercial distribution.
Commercial development of free software is no longer unusual; such free commercial
software is very important. You may have paid money to get copies of free software,
or you may have obtained copies at no charge. But regardless of how you got your
copies, you always have the freedom to copy and change the software, even to sell
copies.

 Whether a change constitutes an improvement is a subjective matter. If your
right to modify a program is limited, in substance, to changes that someone else
considers an improvement, that program is not free.

 However, rules about how to package a modified version are acceptable, if
they don’t substantively limit your freedom to release modified versions,
or your freedom to make and use modified versions privately. Thus, it is
acceptable for the license to require that you change the name of the modified
version, remove a logo, or identify your modifications as yours. As long as
these requirements are not so burdensome that they effectively hamper you
from releasing your changes, they are acceptable; you’re already making
other changes to the program, so you won’t have trouble making a few
more.

 Rules that “if you make your version available in this way, you must
make it available in that way also” can be acceptable too, on the same
condition. An example of such an acceptable rule is one saying that if you have
distributed a modified version and a previous developer asks for a copy of it,
you must send one. (Note that such a rule still leaves you the choice of
whether to distribute your version at all.) Rules that require release of
source code to the users for versions that you put into public use are also
acceptable.

 A special issue arises when a license requires changing the name by which the
program will be invoked from other programs. That effectively hampers you from
releasing your changed version so that it can replace the original when invoked by
those other programs. This sort of requirement is acceptable only if there’s a
suitable aliasing facility that allows you to specify the original program’s name as
an alias for the modified version.

 Sometimes government export control regulations and trade sanctions can
constrain your freedom to distribute copies of programs internationally. Software
developers do not have the power to eliminate or override these restrictions, but

what they can and must do is refuse to impose them as conditions of use of the
program. In this way, the restrictions will not affect activities and people outside
the jurisdictions of these governments. Thus, free software licenses must not require
obedience to any nontrivial export regulations as a condition of exercising any of the
essential freedoms.

 Merely mentioning the existence of export regulations, without making them a
condition of the license itself, is acceptable since it does not restrict users. If an
export regulation is actually trivial for free software, then requiring it as a condition
is not an actual problem; however, it is a potential problem, since a later change in
export law could make the requirement nontrivial and thus render the software
nonfree.

 A free license may not require compliance with the license of a nonfree program.
Thus, for instance, if a license requires you to comply with the licenses of “all the
programs you use,” in the case of a user that runs nonfree programs this would
require compliance with the licenses of those nonfree programs; that makes the
license nonfree.

 It is acceptable for a free license to specify which jurisdiction’s law applies, or
where litigation must be done, or both.

 Most free software licenses are based on copyright, and there are limits on what
kinds of requirements can be imposed through copyright. If a copyright-based
license respects freedom in the ways described above, it is unlikely to have some
other sort of problem that we never anticipated (though this does happen
occasionally). However, some free software licenses are based on contracts, and
contracts can impose a much larger range of possible restrictions. That means there
are many possible ways such a license could be unacceptably restrictive and
nonfree.

 We can’t possibly list all the ways that might happen. If a contract-based license
restricts the user in an unusual way that copyright-based licenses cannot, and which
isn’t mentioned here as legitimate, we will have to think about it, and we will
probably conclude it is nonfree.

 When talking about free software, it is best to avoid using terms like “give away”
or “for free,” because those terms imply that the issue is about price, not
freedom. Some common terms such as “piracy” embody opinions we hope
you won’t endorse. See “Words to Avoid (or Use with Care) Because They
Are Loaded or Confusing” ([link]) for a discussion of these terms. We also
have a list of proper translations of “free software” into various languages
([link]).

 Finally, note that criteria such as those stated in this free software definition
require careful thought for their interpretation. To decide whether a specific
software license qualifies as a free software license, we judge it based on these
criteria to determine whether it fits their spirit as well as the precise words. If a
license includes unconscionable restrictions, we reject it, even if we did not
anticipate the issue in these criteria. Sometimes a license requirement raises an issue
that calls for extensive thought, including discussions with a lawyer, before we can
decide if the requirement is acceptable. When we reach a conclusion about a new
issue, we often update these criteria to make it easier to see why certain licenses do

or don’t qualify.

 If you are interested in whether a specific license qualifies as a free software
license, see our list of licenses, at http://gnu.org/licenses/license-list.html.
If the license you are concerned with is not listed there, you can ask us about it by
sending us email at licensing@gnu.org.

 If you are contemplating writing a new license, please contact the Free Software
Foundation first by writing to that address. The proliferation of different free
software licenses means increased work for users in understanding the licenses; we
may be able to help you find an existing free software license that meets your
needs.

 If that isn’t possible, if you really need a new license, with our help you can
ensure that the license really is a free software license and avoid various practical
problems.

 Beyond Software

 Software manuals must be free, [2] for the same reasons that software must be free,
and because the manuals are in effect part of the software.

 The same arguments also make sense for other kinds of works of practical
use—that is to say, works that embody useful knowledge, such as educational works
and reference works. Wikipedia is the best-known example.

 Any kind of work can be free, and the definition of free software has been
extended to a definition of free cultural works [3] applicable to any kind of
works.

 Open Source?

 Another group users the term “open source” to mean something close (but not
identical) to “free software.” We prefer the term “free software” because, once you
have heard that it refers to freedom rather than price, it calls to mind freedom. The
word “open” never refers to freedom. [4]

 Endnotes

 [1] See “Free Software Is Even More Important Now” ([link]) for more on this issue.

 [2] See “Why Free Software Needs Free Documentation” ([link]).

 [3] See http://freedomdefined.org.

 [4] See “Why Open Source Misses the Point of Free Software” ([link]).

 Chapter 2
The GNU Project

Copyright © 1998, 2001, 2002, 2005–2008, 2010 Richard Stallman
 The original version of this essay was published in Open Sources: Voices from the Open Source
Revolution, by Chris DiBona and others (Sebastopol: O’Reilly Media, 1999), under the title “The
GNU Operating System and the Free Software Movement.” Though I was never a supporter of
“open source,” I contributed this article anyway, so that the ideas of the free software movement
would not be entirely absent from that book. This version is part of Free Software,
Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 The First Software-Sharing Community

 When I started working at the MIT Artificial Intelligence Lab in 1971, I became
part of a software-sharing community that had existed for many years. Sharing of
software was not limited to our particular community; it is as old as computers,
just as sharing of recipes is as old as cooking. But we did it more than
most.

 The AI Lab used a timesharing operating system called ITS (the Incompatible
Timesharing System) that the lab’s staff hackers [1] had designed and written in
assembler language for the Digital PDP-10, one of the large computers of the era.
As a member of this community, an AI Lab staff system hacker, my job was to
improve this system.

 We did not call our software “free software,” because that term did not yet exist;
but that is what it was. Whenever people from another university or a company
wanted to port and use a program, we gladly let them. If you saw someone using an
unfamiliar and interesting program, you could always ask to see the source code, so
that you could read it, change it, or cannibalize parts of it to make a new
program.

 The Collapse of the Community

 The situation changed drastically in the early 1980s when Digital discontinued
the PDP-10 series. Its architecture, elegant and powerful in the 60s, could not
extend naturally to the larger address spaces that were becoming feasible in
the 80s. This meant that nearly all of the programs composing ITS were
obsolete.

 The AI Lab hacker community had already collapsed, not long before. In 1981,
the spin-off company Symbolics had hired away nearly all of the hackers from the
AI Lab, and the depopulated community was unable to maintain itself. (The book
Hackers, by Steve Levy, describes these events, as well as giving a clear picture of
this community in its prime.) When the AI Lab bought a new PDP-10 in 1982, its
administrators decided to use Digital’s nonfree timesharing system instead of
ITS.

 The modern computers of the era, such as the VAX or the 68020, had their own
operating systems, but none of them were free software: you had to sign a
nondisclosure agreement even to get an executable copy.

 This meant that the first step in using a computer was to promise not to help
your neighbor. A cooperating community was forbidden. The rule made by the
owners of proprietary software was, “If you share with your neighbor, you are a
pirate. If you want any changes, beg us to make them.”

 The idea that the proprietary software social system—the system that says you
are not allowed to share or change software—is antisocial, that it is unethical, that
it is simply wrong, may come as a surprise to some readers. But what else
could we say about a system based on dividing the public and keeping
users helpless? Readers who find the idea surprising may have taken the
proprietary software social system as a given, or judged it on the terms
suggested by proprietary software businesses. Software publishers have worked
long and hard to convince people that there is only one way to look at the
issue.

 When software publishers talk about “enforcing” their “rights” or “stopping
piracy,” [2] what they actually say is secondary. The real message of these
statements is in the unstated assumptions they take for granted, which the
public is asked to accept without examination. Let’s therefore examine
them.

 One assumption is that software companies have an unquestionable natural right
to own software and thus have power over all its users. (If this were a natural right,
then no matter how much harm it does to the public, we could not object.)
Interestingly, the US Constitution and legal tradition reject this view; copyright is
not a natural right, but an artificial government-imposed monopoly that limits the
users’ natural right to copy.

 Another unstated assumption is that the only important thing about software is
what jobs it allows you to do—that we computer users should not care what kind of
society we are allowed to have.

 A third assumption is that we would have no usable software (or would never
have a program to do this or that particular job) if we did not offer a company
power over the users of the program. This assumption may have seemed plausible,
before the free software movement demonstrated that we can make plenty of useful
software without putting chains on it.

 If we decline to accept these assumptions, and judge these issues based on
ordinary commonsense morality while placing the users first, we arrive at very
different conclusions. Computer users should be free to modify programs to fit their
needs, and free to share software, because helping other people is the basis of

society.

 There is no room here for an extensive statement of the reasoning behind this
conclusion, so I refer the reader to the articles “Why Software Should Not Have
Owners,” at http://gnu.org/philosophy/why-free.html, and “Free Software Is
Even More Important Now” ([link]).

 A Stark Moral Choice

 With my community gone, to continue as before was impossible. Instead, I faced
a stark moral choice.

 The easy choice was to join the proprietary software world, signing nondisclosure
agreements and promising not to help my fellow hacker. Most likely I would also be
developing software that was released under nondisclosure agreements, thus adding
to the pressure on other people to betray their fellows too. I could have
made money this way, and perhaps amused myself writing code. But I knew
that at the end of my career, I would look back on years of building walls
to divide people, and feel I had spent my life making the world a worse
place.

 I had already experienced being on the receiving end of a nondisclosure
agreement, when someone refused to give me and the MIT AI Lab the source code
for the control program for our printer. (The lack of certain features in this program
made use of the printer extremely frustrating.) So I could not tell myself that
nondisclosure agreements were innocent. I was very angry when he refused to
share with us; I could not turn around and do the same thing to everyone
else.

 Another choice, straightforward but unpleasant, was to leave the computer field.
That way my skills would not be misused, but they would still be wasted. I would
not be culpable for dividing and restricting computer users, but it would happen
nonetheless.

 So I looked for a way that a programmer could do something for the good. I
asked myself, was there a program or programs that I could write, so as to make a
community possible once again?

 The answer was clear: what was needed first was an operating system. That is
the crucial software for starting to use a computer. With an operating system,
you can do many things; without one, you cannot run the computer at
all. With a free operating system, we could again have a community of
cooperating hackers—and invite anyone to join. And anyone would be able to
use a computer without starting out by conspiring to deprive his or her
friends.

 As an operating system developer, I had the right skills for this job. So even
though I could not take success for granted, I realized that I was elected to do the
job. I chose to make the system compatible with Unix so that it would be

portable, and so that Unix users could easily switch to it. The name GNU was
chosen, following a hacker tradition, as a recursive acronym for “GNU’s Not
Unix.”

 An operating system does not mean just a kernel, barely enough to run other
programs. In the 1970s, every operating system worthy of the name included
command processors, assemblers, compilers, interpreters, debuggers, text
editors, mailers, and much more. ITS had them, Multics had them, VMS had
them, and Unix had them. The GNU operating system would include them
too.

 Later I heard these words, attributed to Hillel: [3]

 If I am not for myself, who will be for me? If I am only for myself, what
 am I? If not now, when?

The decision to start the GNU Project was based on a similar spirit.

 Free as in Freedom

 The term “free software” is sometimes misunderstood—it has nothing to do
with price. It is about freedom. Here, therefore, is the definition of free
software.

 A program is free software, for you, a particular user, if:

 	You have the freedom to run the program as you wish, for any purpose.

 	You have the freedom to modify the program to suit your needs. (To make
 this freedom effective in practice, you must have access to the source
 code, since making changes in a program without having the source code
 is exceedingly difficult.)

 	You have the freedom to redistribute copies, either gratis or for a fee.

 	You have the freedom to distribute modified versions of the program, so
 that the community can benefit from your improvements.

 Since “free” refers to freedom, not to price, there is no contradiction between
selling copies and free software. In fact, the freedom to sell copies is crucial:
collections of free software sold on CD-ROMs are important for the community, and
selling them is an important way to raise funds for free software development.
Therefore, a program which people are not free to include on these collections is not
free software.

 Because of the ambiguity of “free,” people have long looked for alternatives, but
no one has found a better term. The English language has more words and nuances
than any other, but it lacks a simple, unambiguous, word that means “free,” as in
freedom—“unfettered” being the word that comes closest in meaning. Such
alternatives as “liberated,” “freedom,” and “open” have either the wrong meaning or
some other disadvantage.

 GNU Software and the GNU System

 Developing a whole system is a very large project. To bring it into reach, I
decided to adapt and use existing pieces of free software wherever that was possible.
For example, I decided at the very beginning to use TEX as the principal text
formatter; a few years later, I decided to use the X Window System rather than
writing another window system for GNU.

 Because of these decisions, and others like them, the GNU system is not the
same as the collection of all GNU software. The GNU system includes programs
that are not GNU software, programs that were developed by other people and
projects for their own purposes, but which we can use because they are free
software.

 Commencing the Project

 In January 1984 I quit my job at MIT and began writing GNU software.
Leaving MIT was necessary so that MIT would not be able to interfere with
distributing GNU as free software. If I had remained on the staff, MIT
could have claimed to own the work, and could have imposed their own
distribution terms, or even turned the work into a proprietary software
package. I had no intention of doing a large amount of work only to see it
become useless for its intended purpose: creating a new software-sharing
community.

 However, Professor Winston, then the head of the MIT AI Lab, kindly invited
me to keep using the lab’s facilities.

 The First Steps

 Shortly before beginning the GNU Project, I heard about the Free University
Compiler Kit, also known as VUCK. (The Dutch word for “free” is written with a
v.) This was a compiler designed to handle multiple languages, including C and
Pascal, and to support multiple target machines. I wrote to its author asking if
GNU could use it.

 He responded derisively, stating that the university was free but the compiler
was not. I therefore decided that my first program for the GNU Project would be a
multilanguage, multiplatform compiler.

 Hoping to avoid the need to write the whole compiler myself, I obtained the
source code for the Pastel compiler, which was a multiplatform compiler developed
at Lawrence Livermore Lab. It supported, and was written in, an extended
version of Pascal, designed to be a system-programming language. I added a
C front end, and began porting it to the Motorola 68000 computer. But
I had to give that up when I discovered that the compiler needed many
megabytes of stack space, and the available 68000 Unix system would only allow
64k.

 I then realized that the Pastel compiler functioned by parsing the entire input
file into a syntax tree, converting the whole syntax tree into a chain of
“instructions,” and then generating the whole output file, without ever freeing any
storage. At this point, I concluded I would have to write a new compiler
from scratch. That new compiler is now known as GCC; none of the Pastel
compiler is used in it, but I managed to adapt and use the C front end
that I had written. But that was some years later; first, I worked on GNU
Emacs.

 GNU Emacs

 I began work on GNU Emacs in September 1984, and in early 1985 it was
beginning to be usable. This enabled me to begin using Unix systems to do editing;
having no interest in learning to use vi or ed, I had done my editing on other kinds
of machines until then.

 At this point, people began wanting to use GNU Emacs, which raised the
question of how to distribute it. Of course, I put it on the anonymous ftp server on
the MIT computer that I used. (This computer, prep.ai.mit.edu, thus became the
principal GNU ftp distribution site; when it was decommissioned a few years later,
we transferred the name to our new ftp server.) But at that time, many of the
interested people were not on the internet and could not get a copy by ftp. So the
question was, what would I say to them?

 I could have said, “Find a friend who is on the net and who will make a copy for
you.” Or I could have done what I did with the original PDP-10 Emacs: tell them,
“Mail me a tape and a SASE (self-addressed stamped envelope), and I will mail it
back with Emacs on it.” But I had no job, and I was looking for ways to make
money from free software. So I announced that I would mail a tape to whoever
wanted one, for a fee of $150. In this way, I started a free software distribution
business, the precursor of the companies that today distribute entire GNU/Linux
system distributions.

 Is a Program Free for Every User?

 If a program is free software when it leaves the hands of its author, this does not
necessarily mean it will be free software for everyone who has a copy of it. For
example, public domain software [4] (software that is not copyrighted) is free software;
but anyone can make a proprietary modified version of it. Likewise, many free
programs are copyrighted but distributed under simple permissive licenses which
allow proprietary modified versions.

 The paradigmatic example of this problem is the X Window System.
Developed at MIT, and released as free software with a permissive license, it
was soon adopted by various computer companies. They added X to their
proprietary Unix systems, in binary form only, and covered by the same
nondisclosure agreement. These copies of X were no more free software than Unix
was.

 The developers of the X Window System did not consider this a problem—they
expected and intended this to happen. Their goal was not freedom, just “success,”
defined as “having many users.” They did not care whether these users had freedom,
only that they should be numerous.

 This led to a paradoxical situation where two different ways of counting the
amount of freedom gave different answers to the question, “Is this program free?” If
you judged based on the freedom provided by the distribution terms of the MIT
release, you would say that X was free software. But if you measured the freedom of
the average user of X, you would have to say it was proprietary software. Most X
users were running the proprietary versions that came with Unix systems, not the
free version.

 Copyleft and the GNU GPL

 The goal of GNU was to give users freedom, not just to be popular. So
we needed to use distribution terms that would prevent GNU software

from being turned into proprietary software. The method we use is called
“copyleft.” [5]

 Copyleft uses copyright law, but flips it over to serve the opposite of its usual
purpose: instead of a means for restricting a program, it becomes a means for
keeping the program free.

 The central idea of copyleft is that we give everyone permission to run the
program, copy the program, modify the program, and distribute modified
versions—but not permission to add restrictions of their own. Thus, the crucial
freedoms that define “free software” are guaranteed to everyone who has a copy;
they become inalienable rights.

 For an effective copyleft, modified versions must also be free. This ensures that
work based on ours becomes available to our community if it is published. When
programmers who have jobs as programmers volunteer to improve GNU software, it
is copyleft that prevents their employers from saying, “You can’t share those
changes, because we are going to use them to make our proprietary version of the
program.”

 The requirement that changes must be free is essential if we want to ensure
freedom for every user of the program. The companies that privatized the X
Window System usually made some changes to port it to their systems and
hardware. These changes were small compared with the great extent of
X, but they were not trivial. If making changes were an excuse to deny
the users freedom, it would be easy for anyone to take advantage of the
excuse.

 A related issue concerns combining a free program with nonfree code. Such a
combination would inevitably be nonfree; whichever freedoms are lacking for the
nonfree part would be lacking for the whole as well. To permit such combinations
would open a hole big enough to sink a ship. Therefore, a crucial requirement for
copyleft is to plug this hole: anything added to or combined with a copylefted
program must be such that the larger combined version is also free and
copylefted.

 The specific implementation of copyleft that we use for most GNU software is
the GNU General Public License, or GNU GPL for short. We have other kinds of
copyleft that are used in specific circumstances. GNU manuals are copylefted also,
but use a much simpler kind of copyleft, because the complexity of the GNU GPL is
not necessary for manuals. [6]

 The Free Software Foundation

 As interest in using Emacs was growing, other people became involved in the
GNU project, and we decided that it was time to seek funding once again. So in
1985 we created the Free Software Foundation (FSF), a tax-exempt charity
for free software development. The FSF also took over the Emacs tape

distribution business; later it extended this by adding other free software
(both GNU and non-GNU) to the tape, and by selling free manuals as
well.

 Most of the FSF’s income used to come from sales of copies of free software and
of other related services (CD-ROMs of source code, CD-ROMs with binaries, nicely
printed manuals, all with the freedom to redistribute and modify), and Deluxe
Distributions (distributions for which we built the whole collection of software for
the customer’s choice of platform). Today the FSF still sells manuals and other
gear, [7] but it gets the bulk of its funding from members’ dues. You can join the FSF
at http://fsf.org/join.

 Free Software Foundation employees have written and maintained a number of
GNU software packages. Two notable ones are the C library and the shell. The GNU
C Library is what every program running on a GNU/Linux system uses to
communicate with Linux. It was developed by a member of the Free Software
Foundation staff, Roland McGrath. The shell used on most GNU/Linux systems is
BASH, the Bourne Again Shell, [8] which was developed by FSF employee Brian
Fox.

 We funded development of these programs because the GNU Project was not
just about tools or a development environment. Our goal was a complete operating
system, and these programs were needed for that goal.

 Free Software Support

 The free software philosophy rejects a specific widespread business practice, but
it is not against business. When businesses respect the users’ freedom, we wish them
success.

 Selling copies of Emacs demonstrates one kind of free software business. When
the FSF took over that business, I needed another way to make a living. I found it
in selling services relating to the free software I had developed. This included
teaching, for subjects such as how to program GNU Emacs and how to
customize GCC, and software development, mostly porting GCC to new
platforms.

 Today each of these kinds of free software business is practiced by a number of
corporations. Some distribute free software collections on CD-ROM; others sell
support at levels ranging from answering user questions, to fixing bugs, to adding
major new features. We are even beginning to see free software companies based on
launching new free software products.

 Watch out, though—a number of companies that associate themselves with the
term “open source” actually base their business on nonfree software that works with
free software. These are not free software companies, they are proprietary software
companies whose products tempt users away from freedom. They call these
programs “value-added packages,” which shows the values they would like us to

adopt: convenience above freedom. If we value freedom more, we should call them
“freedom-subtracted” packages.

 Technical Goals

 The principal goal of GNU is to be free software. Even if GNU had no technical
advantage over Unix, it would have a social advantage, allowing users to cooperate,
and an ethical advantage, respecting the user’s freedom.

 But it was natural to apply the known standards of good practice to the
work—for example, dynamically allocating data structures to avoid arbitrary fixed
size limits, and handling all the possible 8-bit codes wherever that made
sense.

 In addition, we rejected the Unix focus on small memory size, by deciding not to
support 16-bit machines (it was clear that 32-bit machines would be the norm by
the time the GNU system was finished), and to make no effort to reduce memory
usage unless it exceeded a megabyte. In programs for which handling very
large files was not crucial, we encouraged programmers to read an entire
input file into core, then scan its contents without having to worry about
I/O.

 These decisions enabled many GNU programs to surpass their Unix counterparts
in reliability and speed.

 Donated Computers

 As the GNU Project’s reputation grew, people began offering to donate
machines running Unix to the project. These were very useful, because
the easiest way to develop components of GNU was to do it on a Unix
system, and replace the components of that system one by one. But they
raised an ethical issue: whether it was right for us to have a copy of Unix at
all.

 Unix was (and is) proprietary software, and the GNU Project’s philosophy said
that we should not use proprietary software. But, applying the same reasoning that
leads to the conclusion that violence in self defense is justified, I concluded that
it was legitimate to use a proprietary package when that was crucial for
developing a free replacement that would help others stop using the proprietary
package.

 But, even if this was a justifiable evil, it was still an evil. Today we no longer
have any copies of Unix, because we have replaced them with free operating
systems. If we could not replace a machine’s operating system with a free one, we

replaced the machine instead.

 The GNU Task List

 As the GNU Project proceeded, and increasing numbers of system components
were found or developed, eventually it became useful to make a list of the remaining
gaps. We used it to recruit developers to write the missing pieces. This list became
known as the GNU Task List. In addition to missing Unix components, we listed
various other useful software and documentation projects that, we thought, a truly
complete system ought to have.

 Today, [9] hardly any Unix components are left in the GNU Task List—those jobs
had been done, aside from a few inessential ones. But the list is full of projects that
some might call “applications.” Any program that appeals to more than
a narrow class of users would be a useful thing to add to an operating
system.

 Even games are included in the task list—and have been since the beginning.
Unix included games, so naturally GNU should too. But compatibility was not
an issue for games, so we did not follow the list of games that Unix had.
Instead, we listed a spectrum of different kinds of games that users might
like.

 The GNU Library GPL

 The GNU C Library uses a special kind of copyleft called the GNU Library
General Public License, [10] which gives permission to link proprietary software with
the library. Why make this exception?

 It is not a matter of principle; there is no principle that says proprietary
software products are entitled to include our code. (Why contribute to a project
predicated on refusing to share with us?) Using the LGPL for the C library, or for
any library, is a matter of strategy.

 The C library does a generic job; every proprietary system or compiler comes
with a C library. Therefore, to make our C library available only to free software
would not have given free software any advantage—it would only have discouraged
use of our library.

 One system is an exception to this: on the GNU system (and this includes
GNU/Linux), the GNU C Library is the only C library. So the distribution terms of
the GNU C Library determine whether it is possible to compile a proprietary
program for the GNU system. There is no ethical reason to allow proprietary
applications on the GNU system, but strategically it seems that disallowing them

would do more to discourage use of the GNU system than to encourage
development of free applications. That is why using the Library GPL is a good
strategy for the C library.

 For other libraries, the strategic decision needs to be considered on a
case-by-case basis. When a library does a special job that can help write certain
kinds of programs, then releasing it under the GPL, limiting it to free programs
only, is a way of helping other free software developers, giving them an advantage
against proprietary software.

 Consider GNU Readline, a library that was developed to provide command-line
editing for BASH. Readline is released under the ordinary GNU GPL, not the
Library GPL. This probably does reduce the amount Readline is used, but that is
no loss for us. Meanwhile, at least one useful application has been made free
software specifically so it could use Readline, and that is a real gain for the
community.

 Proprietary software developers have the advantages money provides; free
software developers need to make advantages for each other. I hope some day we
will have a large collection of GPL-covered libraries that have no parallel available
to proprietary software, providing useful modules to serve as building blocks in new
free software, and adding up to a major advantage for further free software
development.

 Scratching an Itch?

 Eric Raymond [11] says that “Every good work of software starts by scratching a
developer’s personal itch.” [12] Maybe that happens sometimes, but many essential
pieces of GNU software were developed in order to have a complete free operating
system. They come from a vision and a plan, not from impulse.

 For example, we developed the GNU C Library because a Unix-like system needs
a C library, BASH because a Unix-like system needs a shell, and GNU
tar because a Unix-like system needs a tar program. The same is true for
my own programs—the GNU C compiler, GNU Emacs, GDB and GNU
Make.

 Some GNU programs were developed to cope with specific threats to our
freedom. Thus, we developed gzip to replace the Compress program, which had
been lost to the community because of the LZW patents. We found people to
develop LessTif, and more recently started GNOME and Harmony, to address
the problems caused by certain proprietary libraries (see below). We are
developing the GNU Privacy Guard to replace popular nonfree encryption
software, because users should not have to choose between privacy and
freedom.

 Of course, the people writing these programs became interested in the
work, and many features were added to them by various people for the

sake of their own needs and interests. But that is not why the programs
exist.

 Unexpected Developments

 At the beginning of the GNU Project, I imagined that we would develop the
whole GNU system, then release it as a whole. That is not how it happened.

 Since each component of the GNU system was implemented on a Unix system,
each component could run on Unix systems long before a complete GNU system
existed. Some of these programs became popular, and users began extending them
and porting them—to the various incompatible versions of Unix, and sometimes to
other systems as well.

 The process made these programs much more powerful, and attracted both
funds and contributors to the GNU Project. But it probably also delayed
completion of a minimal working system by several years, as GNU developers’ time
was put into maintaining these ports and adding features to the existing
components, rather than moving on to write one missing component after
another.

 The GNU Hurd

 By 1990, the GNU system was almost complete; the only major missing
component was the kernel. We had decided to implement our kernel as a collection
of server processes running on top of Mach. Mach is a microkernel developed at
Carnegie Mellon University and then at the University of Utah; the GNU Hurd
is a collection of servers (i.e., a herd of GNUs) that run on top of Mach,
and do the various jobs of the Unix kernel. The start of development was
delayed as we waited for Mach to be released as free software, as had been
promised.

 One reason for choosing this design was to avoid what seemed to be the hardest
part of the job: debugging a kernel program without a source-level debugger to do it
with. This part of the job had been done already, in Mach, and we expected to
debug the Hurd servers as user programs, with GDB. But it took a long time to
make that possible, and the multithreaded servers that send messages to each other
have turned out to be very hard to debug. Making the Hurd work solidly has
stretched on for many years.

 Alix

 The GNU kernel was not originally supposed to be called the Hurd. Its original
name was Alix—named after the woman who was my sweetheart at the time. She, a
Unix system administrator, had pointed out how her name would fit a common
naming pattern for Unix system versions; as a joke, she told her friends, “Someone
should name a kernel after me.” I said nothing, but decided to surprise her with a
kernel named Alix.

 It did not stay that way. Michael (now Thomas) Bushnell, the main developer of
the kernel, preferred the name Hurd, and redefined Alix to refer to a certain part of
the kernel—the part that would trap system calls and handle them by sending
messages to Hurd servers.

 Later, Alix and I broke up, and she changed her name; independently,
the Hurd design was changed so that the C library would send messages
directly to servers, and this made the Alix component disappear from the
design.

 But before these things happened, a friend of hers came across the name Alix in
the Hurd source code, and mentioned it to her. So she did have the chance to find a
kernel named after her.

 Linux and GNU/Linux

 The GNU Hurd is not suitable for production use, and we don’t know
if it ever will be. The capability-based design has problems that result
directly from the flexibility of the design, and it is not clear whether solutions
exist.

 Fortunately, another kernel is available. In 1991, Linus Torvalds developed a
Unix-compatible kernel and called it Linux. It was proprietary at first, but in 1992,
he made it free software; combining Linux with the not-quite-complete GNU system
resulted in a complete free operating system. (Combining them was a substantial
job in itself, of course.) It is due to Linux that we can actually run a version of the
GNU system today.

 We call this system version GNU/Linux, to express its composition as a
combination of the GNU system with Linux as the kernel. Please don’t fall into the
practice of calling the whole system “Linux,” since that means attributing our work
to someone else. Please give us equal mention. [13]

 Challenges in Our Future

 We have proved our ability to develop a broad spectrum of free software. This
does not mean we are invincible and unstoppable. Several challenges make the
future of free software uncertain; meeting them will require steadfast effort and
endurance, sometimes lasting for years. It will require the kind of determination
that people display when they value their freedom and will not let anyone take it
away.

 The following four sections discuss these challenges.

 Secret Hardware

 Hardware manufacturers increasingly tend to keep hardware specifications
secret. This makes it difficult to write free drivers so that Linux and XFree86 can
support new hardware. We have complete free systems today, but we will not have
them tomorrow if we cannot support tomorrow’s computers.

 There are two ways to cope with this problem. Programmers can do reverse
engineering to figure out how to support the hardware. The rest of us can choose
the hardware that is supported by free software; as our numbers increase, secrecy of
specifications will become a self-defeating policy.

 Reverse engineering is a big job; will we have programmers with sufficient
determination to undertake it? Yes—if we have built up a strong feeling that free
software is a matter of principle, and nonfree drivers are intolerable. And
will large numbers of us spend extra money, or even a little extra time,
so we can use free drivers? Yes, if the determination to have freedom is
widespread.

 [2008 note: this issue extends to the BIOS as well. There is a free BIOS,
LibreBoot [14] (a distribution of coreboot); the problem is getting specs for machines
so that LibreBoot can support them without nonfree “blobs.”]

 Nonfree Libraries

 A nonfree library that runs on free operating systems acts as a trap for free
software developers. The library’s attractive features are the bait; if you use the
library, you fall into the trap, because your program cannot usefully be part of a
free operating system. (Strictly speaking, we could include your program, but it
won’t run with the library missing.) Even worse, if a program that uses the
proprietary library becomes popular, it can lure other unsuspecting programmers
into the trap.

 The first instance of this problem was the Motif toolkit, back in the 80s.
Although there were as yet no free operating systems, it was clear what problem
Motif would cause for them later on. The GNU Project responded in two ways: by
asking individual free software projects to support the free X Toolkit widgets
as well as Motif, and by asking for someone to write a free replacement
for Motif. The job took many years; LessTif, developed by the Hungry
Programmers, became powerful enough to support most Motif applications only in
1997.

 Between 1996 and 1998, another nonfree GUI toolkit library, called Qt, was used
in a substantial collection of free software, the desktop KDE.

 Free GNU/Linux systems were unable to use KDE, because we could not use the
library. However, some commercial distributors of GNU/Linux systems who were
not strict about sticking with free software added KDE to their systems—producing
a system with more capabilities, but less freedom. The KDE group was actively
encouraging more programmers to use Qt, and millions of new “Linux users” had
never been exposed to the idea that there was a problem in this. The situation
appeared grim.

 The free software community responded to the problem in two ways: GNOME
and Harmony.

 GNOME, the GNU Network Object Model Environment, is GNU’s desktop
project. Started in 1997 by Miguel de Icaza, and developed with the support of Red
Hat Software, GNOME set out to provide similar desktop facilities, but using free
software exclusively. It has technical advantages as well, such as supporting a
variety of languages, not just C++. But its main purpose was freedom: not to
require the use of any nonfree software.

 Harmony is a compatible replacement library, designed to make it possible to
run KDE software without using Qt.

 In November 1998, the developers of Qt announced a change of license
which, when carried out, should make Qt free software. There is no way
to be sure, but I think that this was partly due to the community’s firm
response to the problem that Qt posed when it was nonfree. (The new
license is inconvenient and inequitable, so it remains desirable to avoid using
Qt.)

 [Subsequent note: in September 2000, Qt was rereleased under the GNU GPL,
which essentially solved this problem.]

 How will we respond to the next tempting nonfree library? Will the whole
community understand the need to stay out of the trap? Or will many of us give up
freedom for convenience, and produce a major problem? Our future depends on our
philosophy.

 Software Patents

 The worst threat we face comes from software patents, which can put
algorithms and features off limits to free software for up to twenty years.
The LZW compression algorithm patents were applied for in 1983, and
we still cannot release free software to produce proper compressed GIFs.
[As of 2009 they have expired.] In 1998, a free program to produce MP3
compressed audio was removed from distribution under threat of a patent
suit.

 There are ways to cope with patents: we can search for evidence that a patent is
invalid, and we can look for alternative ways to do a job. But each of these
methods works only sometimes; when both fail, a patent may force all free
software to lack some feature that users want. What will we do when this
happens?

 Those of us who value free software for freedom’s sake will stay with free
software anyway. We will manage to get work done without the patented
features. But those who value free software because they expect it to be
technically superior are likely to call it a failure when a patent holds it
back. Thus, while it is useful to talk about the practical effectiveness of
the “bazaar” model of development, and the reliability and power of some
free software, we must not stop there. We must talk about freedom and
principle.

 Free Documentation

 The biggest deficiency in our free operating systems is not in the software—it is
the lack of good free manuals that we can include in our systems. Documentation is
an essential part of any software package; when an important free software package
does not come with a good free manual, that is a major gap. We have many such
gaps today.

 Free documentation, like free software, is a matter of freedom, not price. The
criterion for a free manual is pretty much the same as for free software: it is a
matter of giving all users certain freedoms. Redistribution (including commercial
sale) must be permitted, online and on paper, so that the manual can accompany
every copy of the program.

 Permission for modification is crucial too. As a general rule, I don’t
believe that it is essential for people to have permission to modify all sorts of
articles and books. For example, I don’t think you or I are obliged to give
permission to modify articles like this one, which describe our actions and our
views.

 But there is a particular reason why the freedom to modify is crucial
for documentation for free software. When people exercise their right to
modify the software, and add or change its features, if they are conscientious
they will change the manual, too—so they can provide accurate and usable

documentation with the modified program. A nonfree manual, which does not allow
programmers to be conscientious and finish the job, does not fill our community’s
needs.

 Some kinds of limits on how modifications are done pose no problem. For
example, requirements to preserve the original author’s copyright notice, the
distribution terms, or the list of authors, are OK. It is also no problem
to require modified versions to include notice that they were modified,
even to have entire sections that may not be deleted or changed, as long as
these sections deal with nontechnical topics. These kinds of restrictions
are not a problem because they don’t stop the conscientious programmer
from adapting the manual to fit the modified program. In other words,
they don’t block the free software community from making full use of the
manual.

 However, it must be possible to modify all the technical content of the manual,
and then distribute the result in all the usual media, through all the usual channels;
otherwise, the restrictions do obstruct the community, the manual is not free, and
we need another manual.

 Will free software developers have the awareness and determination to
produce a full spectrum of free manuals? Once again, our future depends on
philosophy.

 We Must Talk about Freedom

 Estimates today are that there are ten million users of GNU/Linux systems such
as Debian GNU/Linux and Red Hat “Linux.” Free software has developed
such practical advantages that users are flocking to it for purely practical
reasons.

 The good consequences of this are evident: more interest in developing free
software, more customers for free software businesses, and more ability to encourage
companies to develop commercial free software instead of proprietary software
products.

 But interest in the software is growing faster than awareness of the philosophy it
is based on, and this leads to trouble. Our ability to meet the challenges and threats
described above depends on the will to stand firm for freedom. To make sure our
community has this will, we need to spread the idea to the new users as they come
into the community.

 But we are failing to do so: the efforts to attract new users into our
community are far outstripping the efforts to teach them the civics of our
community. We need to do both, and we need to keep the two efforts in
balance.

 “Open Source”

 Teaching new users about freedom became more difficult in 1998, when a part of
the community decided to stop using the term “free software” and say “open source
software” instead.

 Some who favored this term aimed to avoid the confusion of “free” with
“gratis”—a valid goal. Others, however, aimed to set aside the spirit of principle
that had motivated the free software movement and the GNU Project,
and to appeal instead to executives and business users, many of whom
hold an ideology that places profit above freedom, above community, above
principle. Thus, the rhetoric of “open source” focuses on the potential to make
high-quality, powerful software, but shuns the ideas of freedom, community, and
principle.

 The “Linux” magazines are a clear example of this—they are filled with
advertisements for proprietary software that works with GNU/Linux. When the
next Motif or Qt appears, will these magazines warn programmers to stay away
from it, or will they run ads for it?

 The support of business can contribute to the community in many ways; all else
being equal, it is useful. But winning their support by speaking even less about
freedom and principle can be disastrous; it makes the previous imbalance between
outreach and civics education even worse.

 “Free software” and “open source” describe the same category of software, more
or less, but say different things about the software, and about values. The GNU
Project continues to use the term “free software,” to express the idea that freedom,
not just technology, is important.

 Try!

 Yoda’s aphorism (“There is no ‘try’”) sounds neat, but it doesn’t work for me. I
have done most of my work while anxious about whether I could do the job, and
unsure that it would be enough to achieve the goal if I did. But I tried anyway,
because there was no one but me between the enemy and my city. Surprising myself,
I have sometimes succeeded.

 Sometimes I failed; some of my cities have fallen. Then I found another
threatened city, and got ready for another battle. Over time, I’ve learned to look for
threats and put myself between them and my city, calling on other hackers to come
and join me.

 Nowadays, often I’m not the only one. It is a relief and a joy when I see a
regiment of hackers digging in to hold the line, and I realize, this city may
survive—for now. But the dangers are greater each year, and now Microsoft has

explicitly targeted our community. We can’t take the future of freedom for granted.
Don’t take it for granted! If you want to keep your freedom, you must be prepared
to defend it.

 Endnotes

 [1] The use of “hacker” to mean “security breaker” is a confusion on the part of the mass
media. We hackers refuse to recognize that meaning, and continue using the word to mean
someone who loves to program, someone who enjoys playful cleverness, or the combination of
the two. See my article “On Hacking,” at http://stallman.org/articles/on-hacking.html.

 [2] See [link] for more on the erroneous use of the term “piracy.”

 [3] As an Atheist, I don’t follow any religious leaders, but I sometimes find I admire
something one of them has said.

 [4] See [link] for more on public domain software.

 [5] In 1984 or 1985, Don Hopkins (a very imaginative fellow) mailed me a letter. On the
envelope he had written several amusing sayings, including this one: “Copyleft—all rights
reversed.” I used the word “copyleft” to name the distribution concept I was developing at
the time.

 [6] We now use the GNU Free Documentation License ([link]) for documentation.

 [7] See our online shop, at http://shop.fsf.org.

 [8] “Bourne Again Shell” is a play on the name “Bourne Shell,” which was the usual shell
on Unix.

 [9] That was written in 1998. In 2009 we no longer maintain a long task list. The community
develops free software so fast that we can’t even keep track of it all. Instead, we have a list
of High Priority Projects, a much shorter list of projects we really want to encourage people
to write.

 [10] This license is now called the GNU Lesser General Public License, to avoid giving
the idea that all libraries ought to use it. See “Why You Shouldn’t Use the Lesser GPL
for Your Next Library,” at http://www.gnu.org/philosophy/why-not-lgpl.html, for more
information.

 [11] Eric Raymond is a prominent open source advocate; see “Why Open Source Misses the
Point of Free Software” ([link]).

 [12] Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary, rev. ed. (Sebastopol, Calif.: O’Reilly, 2001), p. 23.

 [13] See the “GNU/Linux FAQ,” at http://gnu.org/gnu/gnu-linux-faq.html, and “Linux
and the GNU System” ([link]) for more on this issue.

 [14] See http://libreboot.org.

 Chapter 3
The Initial Announcement of the GNU Operating System

 Copyright © 1983 Richard Stallman
 This announcement is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

This is the original announcement of the GNU Project, posted by Richard Stallman
on 27 September 1983.

 The actual history of the GNU Project differs in many ways from this initial
plan. For example, the beginning was delayed until January 1984. Several of the
philosophical concepts of free software were not clarified until a few years
later.

 From mit-vax!mit-eddie!RMS@MIT-OZ

From: RMS%MIT-OZ@mit-eddie

Newsgroups: net.unix-wizards,net.usoft

Subject: new Unix implementation

Date: Tue, 27-Sep-83 12:35:59 EST

Organization: MIT AI Lab, Cambridge, MA

Free Unix!

Starting this Thanksgiving I am going to write a complete Unix-compatible
software system called GNU (for Gnu’s Not Unix), and give it away free [1] to
everyone who can use it. Contributions of time, money, programs and equipment
are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write and
run C programs: editor, shell, C compiler, linker, assembler, and a few other
things. After this we will add a text formatter, a YACC, an Empire game, a
spreadsheet, and hundreds of other things. We hope to supply, eventually,
everything useful that normally comes with a Unix system, and anything else
useful, including on-line and hardcopy documentation.

GNU will be able to run Unix programs, but will not be identical to Unix. We
will make all improvements that are convenient, based on our experience with
other operating systems. In particular, we plan to have longer filenames, file
version numbers, a crashproof file system, filename completion perhaps,
terminal-independent display support, and eventually a Lisp-based window system
through which several Lisp programs and ordinary Unix programs can share a
screen. Both C and Lisp will be available as system programming languages. We
will have network software based on MIT’s chaosnet protocol, far superior to
UUCP. We may also have something compatible with UUCP.

Who Am I?

I am Richard Stallman, inventor of the original much-imitated EMACS editor, now
at the Artificial Intelligence Lab at MIT. I have worked extensively on
compilers, editors, debuggers, command interpreters, the Incompatible
Timesharing System and the Lisp Machine operating system. I pioneered

terminal-independent display support in ITS. In addition I have implemented one
crashproof file system and two window systems for Lisp machines.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share
it with other people who like it. I cannot in good conscience sign a
nondisclosure agreement or a software license agreement.

So that I can continue to use computers without violating my principles, I have
decided to put together a sufficient body of free software so that I will be
able to get along without any software that is not free.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m
asking individuals for donations of programs and work.

One computer manufacturer has already offered to provide a machine. But we
could use more. One consequence you can expect if you donate machines is that
GNU will run on them at an early date. The machine had better be able to
operate in a residential area, and not require sophisticated cooling or power.

Individual programmers can contribute by writing a compatible duplicate of some
Unix utility and giving it to me. For most projects, such part-time distributed
work would be very hard to coordinate; the independently-written parts would
not work together. But for the particular task of replacing Unix, this problem
is absent. Most interface specifications are fixed by Unix compatibility. If
each contribution works with the rest of Unix, it will probably work with the
rest of GNU.

If I get donations of money, I may be able to hire a few people full or part
time. The salary won’t be high, but I’m looking for people for whom knowing
they are helping humanity is as important as money. I view this as a way of
enabling dedicated people to devote their full energies to working on GNU by
sparing them the need to make a living in another way.

For more information, contact me.

Arpanet mail:

RMS@MIT-MC.ARPA

Usenet:

...!mit-eddie!RMS@OZ ...!mit-vax!RMS@OZ

US Snail:

Richard Stallman

166 Prospect St

Cambridge, MA 02139

 Endnotes

 [1] The wording here was careless. The intention was that nobody would have to pay for
permission to use the GNU system. But the words don’t make this clear, and people often
interpret them as saying that copies of GNU should always be distributed at little or no
charge. That was never the intent.

 Chapter 4
Free Software Is Even More Important Now

 Copyright © 2015 Richard Stallman
 A substantially edited version of this article was published on the Wired web site as “Why
Free Software Is More Important Now Than Ever Before” (Wired, 28 September 2013,
http://wired.com/opinion/2013/09/why-free-software-is-more-important-now-than-ever-before).
This version of this essay is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Since
1983, the Free Software Movement has campaigned for computer users’
freedom—for users to control the software they use, rather than vice versa.
When a program respects users’ freedom and community, we call it “free
software.”

 We also sometimes call it “libre software” to emphasize that we’re talking about
liberty, not price. Some proprietary (nonfree) programs, such as Photoshop, are very
expensive; others, such as Flash Player, are available gratis—but that’s a minor
detail. Either way, they give the program’s developer power over the users, power
that no one should have.

 Those two nonfree programs have something else in common: they are both
malware. That is, both have functionalities designed to mistreat the user.
Proprietary software nowadays is often malware because the developers’ power
corrupts them. [1] With free software, the users control the program, both
individually and collectively. So they control what their computers do (assuming
those computers are loyal and do what the users’ programs tell them to
do).

 With proprietary software, the program controls the users, and some other
entity (the developer or “owner”) controls the program. So the proprietary program
gives its developer power over its users. That is unjust in itself, and tempts the
developer to mistreat the users in other ways.

 Freedom means having control over your own life. If you use a program to carry
out activities in your life, your freedom depends on your having control
over the program. You deserve to have control over the programs you use,
and all the more so when you use them for something important in your
life.

 Users’ control over the program requires four essential freedoms. [2]

 	The freedom to run the program as you wish, for whatever purpose.

 	The freedom to study the program’s “source code,” and change it, so
 the program does your computing as you wish. Programs are written by
 programmers in a programming language—like English combined with
 algebra—and that form of the program is the “source code.” Anyone who

 knows programming, and has the program in source code form, can read
 the source code, understand its functioning, and change it too. When all
 you get is the executable form, a series of numbers that are efficient for the
 computer to run but extremely hard for a human being to understand,
 understanding and changing the program in that form are forbiddingly
 hard.

 	The freedom to make and distribute exact copies when you wish. (It is
 not an obligation; doing this is your choice. If the program is free, that
 doesn’t mean someone has an obligation to offer you a copy, or that you
 have an obligation to offer him a copy. Distributing a program to users
 without freedom mistreats them; however, choosing not to distribute the
 program—using it privately—does not mistreat anyone.)

 	The freedom to make and distribute copies of your modified versions,
 when you wish.

 The first two freedoms mean each user can exercise individual control over the
program. With the other two freedoms, any group of users can together exercise
collective control over the program. With all four freedoms, the users fully control
the program. If any of them is missing or inadequate, the program is proprietary
(nonfree), and unjust.

 Other kinds of works are also used for practical activities, including recipes for
cooking, educational works such as textbooks, reference works such as dictionaries
and encyclopedias, fonts for displaying paragraphs of text, circuit diagrams for
hardware for people to build, and patterns for making useful (not merely
decorative) objects with a 3D printer. Since these are not software, the free software
movement strictly speaking doesn’t cover them; but the same reasoning
applies and leads to the same conclusion: these works should carry the four
freedoms.

 A free program allows you to tinker with it to make it do what you want (or
cease do to something you dislike). Tinkering with software may sound ridiculous if
you are accustomed to proprietary software as a sealed box, but in the Free World
it’s a common thing to do, and a good way to learn programming. Even the
traditional American pastime of tinkering with cars is obstructed because cars now
contain nonfree software.

 The Injustice of Proprietariness

 If the users don’t control the program, the program controls the users.
With proprietary software, there is always some entity, the developer or
“owner” of the program, that controls the program—and through it, exercises
power over its users. A nonfree program is a yoke, an instrument of unjust
power.

 In outrageous cases (though this outrage has become quite usual) proprietary
programs are designed to spy on the users, restrict them, censor them, and abuse
them. [3] For instance, the operating system of Apple iThings does all of these, and
so does Windows on mobile devices with ARM chips. Windows, mobile
phone firmware, and Google Chrome for Windows include a universal back
door that allows some company to change the program remotely without
asking permission. The Amazon Kindle has a back door that can erase
books.

 The use of nonfree software in the “internet of things” would turn it into the
“internet of telemarketers” [4] as well as the “internet of snoopers.”

 With the goal of ending the injustice of nonfree software, the free software
movement develops free programs so users can free themselves. We began in 1984 by
developing the free operating system GNU. Today, millions of computers run GNU,
mainly in the GNU/Linux combination. [5]

 Distributing a program to users without freedom mistreats those users; however,
choosing not to distribute the program does not mistreat anyone. If you write a
program and use it privately, that does no wrong to others. (You do miss an
opportunity to do good, but that’s not the same as doing wrong.) Thus, when we
say all software must be free, we mean that every copy must come with the four
freedoms, but we don’t mean that someone has an obligation to offer you a
copy.

 Nonfree Software and SaaSS

 Nonfree software was the first way for companies to take control of people’s
computing. Nowadays, there is another way, called Service as a Software Substitute,
or SaaSS. That means letting someone else’s server do your own computing
tasks.

 SaaSS doesn’t mean the programs on the server are nonfree (though they often
are). Rather, using SaaSS causes the same injustices as using a nonfree program:
they are two paths to the same bad place. Take the example of a SaaSS translation
service: The user sends text to the server, and the server translates it (from English
to Spanish, say) and sends the translation back to the user. Now the job
of translating is under the control of the server operator rather than the
user.

 If you use SaaSS, the server operator controls your computing. It requires
entrusting all the pertinent data to the server operator, which will be forced
to show it to the state as well—who does that server really serve, after
all? [6]

 Primary and Secondary Injustices

 When you use proprietary programs or SaaSS, first of all you do wrong to
yourself, because it gives some entity unjust power over you. For your own sake, you
should escape. It also wrongs others if you make a promise not to share. It is evil to
keep such a promise, and a lesser evil to break it; to be truly upright, you should
not make the promise at all.

 There are cases where using nonfree software puts pressure directly on others to
do likewise. Skype is a clear example: when one person uses the nonfree Skype client
software, it requires another person to use that software too—thus both surrender
their freedom. (Google Hangouts have the same problem.) It is wrong even to
suggest using such programs. We should refuse to use them even briefly, even on
someone else’s computer.

 Another harm of using nonfree programs and SaaSS is that it rewards the
perpetrator, encouraging further development of that program or “service,” leading
in turn to even more people falling under the company’s thumb.

 All the forms of indirect harm are magnified when the user is a public entity or a
school.

 Free Software and the State

 Public agencies exist for the people, not for themselves. When they do
computing, they do it for the people. They have a duty to maintain full control
over that computing so that they can assure it is done properly for the
people. (This constitutes the computational sovereignty of the state.) They
must never allow control over the state’s computing to fall into private
hands.

 To maintain control of the people’s computing, public agencies must not do it
with proprietary software (software under the control of an entity other than the
state). And they must not entrust it to a service programmed and run by an entity
other than the state, since this would be SaaSS.

 Proprietary software has no security at all in one crucial case—against its
developer. And the developer may help others attack. Microsoft shows Windows
bugs to the NSA [7] (the US government digital spying agency) before fixing them.
We do not know whether Apple does likewise, but it is under the same government
pressure as Microsoft. If the government of any other country uses such software, it
endangers national security. [8] Do you want the NSA to break into your government’s
computers?

 Free Software and Education

 Schools (and this includes all educational activities) influence the future of
society through what they teach. They should teach exclusively free software, so as
to use their influence for the good. To teach a proprietary program is to implant
dependence, which goes against the mission of education. By training in use of free
software, schools will direct society’s future towards freedom, and help talented
programmers master the craft.

 They will also teach students the habit of cooperating, helping other people.
Each class should have this rule: “Students, this class is a place where we share our
knowledge. If you bring software to class, you may not keep it for yourself.
Rather, you must share copies with the rest of the class—including the
program’s source code, in case someone else wants to learn. Therefore, bringing
proprietary software to class is not permitted except to reverse engineer
it.”

 Proprietary developers would have us punish students who are good enough at
heart to share software and thwart those curious enough to want to change it. This
means a bad education. [9]

 Free Software: More Than “Advantages”

 I’m often asked to describe the “advantages” of free software. But the word
“advantages” is too weak when it comes to freedom. Life without freedom is
oppression, and that applies to computing as well as every other activity in our
lives. We must refuse to give the developers of the programs or computing services
control over the computing we do. This is the right thing to do, for selfish reasons;
but not solely for selfish reasons.

 Freedom includes the freedom to cooperate with others. Denying people that
freedom means keeping them divided, which is the start of a scheme to oppress
them. In the free software community, we are very much aware of the importance of
the freedom to cooperate because our work consists of organized cooperation. If
your friend comes to visit and sees you use a program, she might ask for a copy. A
program which stops you from redistributing it, or says you’re “not supposed to,” is
antisocial.

 In computing, cooperation includes redistributing exact copies of a program to
other users. It also includes distributing your changed versions to them.
Free software encourages these forms of cooperation, while proprietary
software forbids them. It forbids redistribution of copies, and by denying
users the source code, it blocks them from making changes. SaaSS has
the same effects: if your computing is done over the web in someone else’s
server, by someone else’s copy of a program, you can’t see it or touch the

software that does your computing, so you can’t redistribute it or change
it.

 Conclusion

 We deserve to have control of our own computing; how can we win this control?
By rejecting nonfree software on the computers we own or regularly use, and
rejecting SaaSS. By developing free software [10] (for those of us who are
programmers). By refusing to develop or promote nonfree software or SaaSS. By
spreading these ideas to others. [11]

 We and thousands of users have done this since 1984, which is how we now have
the free GNU/Linux operating system that anyone—programmer or not—can use.
Join our cause, as a programmer or an activist. Let’s make all computer users
free.

 Endnotes

 [1] See http://gnu.org/proprietary/proprietary.html for an evolving list of these
threats.

 [2] See [link] for the full definition of free software.

 [3] See footnote 1, on [link].

 [4] Marcelo Rinesi, “The Telemarketer Singularity,” 6 August 2015,
http://ieet.org/index.php/IEET/more/rinesi20150806.

 [5] See “The GNU Project” ([link]), for more on the history of the GNU operating system,
and http://gnu.org/gnu/gnu-linux-faq.html, for the “GNU/Linux FAQ.”

 [6] See “Who Does That Server Really Serve?” ([link]) for more on this issue.

 [7] Sean Gallagher, “NSA Gets Early Access to Zero-Day Data from Microsoft, Others,”
14 June 2013, http://arstechnica.com/security/2013/06/nsa-gets-early-access-to-zero-day-data-from-microsoft-others/.

 [8] See “Measures Governments Can User to Promote Free Software” ([link]) for our suggested
policies.

 [9] See http://gnu.org/education for more discussion of the use of free software in schools.

 [10] See “How to Choose a License for Your Own Work” ([link]) for our licensing
recommendations.

 [11] See http://gnu.org/help for the various ways you could help.

 Chapter 5
Why Schools Should Exclusively Use Free Software

 Copyright © 2003, 2009, 2014 Richard Stallman
 This essay was originally published on http://gnu.org, in 2003. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Educational
activities (including schools) have a moral duty to teach only free software.

 All computer users ought to insist on free software: it gives users the freedom to
control their own computers—with proprietary software, the program does what its
owner or developer wants it to do, not what the user wants it to do. Free software
also gives users the freedom to cooperate with each other, to lead an upright life.
These reasons apply to schools as they do to everyone. However, the purpose of
this article is to present the additional reasons that apply specifically to
education.

 Free software can save schools money, but this is a secondary benefit. Savings
are possible because free software gives schools, like other users, the freedom to copy
and redistribute the software; the school system can give a copy to every school, and
each school can install the program in all its computers, with no obligation to pay
for doing so.

 This benefit is useful, but we firmly refuse to give it first place, because it is
shallow compared to the important ethical issues at stake. Moving schools to free
software is more than a way to make education a little “better”: it is a matter of
doing good education instead of bad education. So let’s consider the deeper
issues.

 Schools have a social mission: to teach students to be citizens of a strong,
capable, independent, cooperating and free society. They should promote the use of
free software just as they promote conservation and voting. By teaching
students free software, they can graduate citizens ready to live in a free digital
society. This will help society as a whole escape from being dominated by
megacorporations.

 In contrast, to teach a nonfree program is implanting dependence, which goes
counter to the schools’ social mission. Schools should never do this.

 Why, after all, do some proprietary software developers offer gratis copies of
their nonfree programs to schools? Because they want to use the schools
to implant dependence on their products, like tobacco companies distributing
gratis cigarettes to school children. [1] gratis copies to these students once
they’ve graduated, nor to the companies that they go to work for. Once
you’re dependent, you’re expected to pay, and future upgrades may be
expensive.

 Free software permits students to learn how software works. Some students,
natural-born programmers, on reaching their teens yearn to learn everything there

is to know about their computer and its software. They are intensely curious to read
the source code of the programs that they use every day.

 Proprietary software rejects their thirst for knowledge: it says, “The knowledge
you want is a secret—learning is forbidden!” Proprietary software is the enemy of
the spirit of education, so it should not be tolerated in a school, except as an object
for reverse engineering.

 Free software encourages everyone to learn. The free software community rejects
the “priesthood of technology,” which keeps the general public in ignorance of how
technology works; we encourage students of any age and situation to read the source
code and learn as much as they want to know.

 Schools that use free software will enable gifted programming students to
advance. How do natural-born programmers learn to be good programmers? They
need to read and understand real programs that people really use. You learn to
write good, clear code by reading lots of code and writing lots of code. Only free
software permits this.

 How do you learn to write code for large programs? You do that by
writing lots of changes in existing large programs. Free Software lets you do
this; proprietary software forbids this. Any school can offer its students the
chance to master the craft of programming, but only if it is a free software
school.

 The deepest reason for using free software in schools is for moral education. We
expect schools to teach students basic facts and useful skills, but that is only part of
their job. The most fundamental task of schools is to teach good citizenship,
including the habit of helping others. In the area of computing, this means teaching
people to share software. Schools, starting from nursery school, should tell their
students, “If you bring software to school, you must share it with the other students.
You must show the source code to the class, in case someone wants to learn.
Therefore bringing nonfree software to class is not permitted, unless it is for
reverse-engineering work.”

 Of course, the school must practice what it preaches: it should bring only free
software to class (except objects for reverse-engineering), and share copies including
source code with the students so they can copy it, take it home, and redistribute it
further.

 Teaching the students to use free software, and to participate in the free software
community, is a hands-on civics lesson. It also teaches students the role model of
public service rather than that of tycoons. All levels of school should use free
software.

 If you have a relationship with a school—if you are a student, a teacher, an
employee, an administrator, a donor, or a parent—it’s your responsibility to
campaign for the school to migrate to free software. If a private request
doesn’t achieve the goal, raise the issue publicly in those communities; that is
the way to make more people aware of the issue and find allies for the
campaign.

 Endnotes

 [1] RJ Reynolds Tobacco Company was fined
$15m in 2002 for handing out free samples of cigarettes at events attended by children. See
http://bbc.co.uk/worldservice/sci_tech/features/health/tobaccotrial/usa.htm.

 Chapter 6
Measures Governments Can Use to Promote Free Software

 Copyright © 2011–2014 Free Software Foundation, Inc.
 This article was first published on http://gnu.org, in 2011. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

This article suggests policies for a strong and firm effort to promote free
software within the state, and to lead the rest of the country towards software
freedom.

 The mission of the state is to organize society for the freedom and well-being of
the people. One aspect of this mission, in the computing field, is to encourage users
to adopt free software: software that respects the users’ freedom. [1] A proprietary
(nonfree) program tramples the freedom of those that use it; it is a social problem
that the state should work to eradicate.

 The state needs to insist on free software in its own computing for the sake of its
computational sovereignty (the state’s control over its own computing). All users
deserve control over their computing, but the state has a responsibility to the
people to maintain control over the computing it does on their behalf. Most
government activities now depend on computing, and its control over those
activities depends on its control over that computing. Losing this control in an
agency whose mission is critical undermines national security.

 Moving state agencies to free software can also provide secondary benefits, such
as saving money and encouraging local software-support businesses.

 In this text, “state entities” refers to all levels of government, and means public
agencies including schools, public-private partnerships, largely state-funded
activities such as charter schools, and “private” corporations controlled by the state
or established with special privileges or functions by the state.

 Education

 The most important policy concerns education, since that shapes the future of
the country:

 	Teach only free software Educational activities, or at least those of
 state entities, must teach only free software (thus, they should never lead
 students to use a nonfree program), and should teach the civic reasons
 for insisting on free software. To teach a nonfree program is to teach
 dependence, which is contrary to the mission of the school.

 The State and the Public

 Also crucial are state policies that influence what software individuals and
organizations use:

 	Never require nonfree programs Laws and public sector practices
 must be changed so that they never require or pressure individuals or
 organizations to use a nonfree program. They should also discourage
 communication and publication practices that imply such consequences
 (including Digital Restrictions Management [2]).

 	Distribute only free software Whenever a state entity distributes
 software to the public, including programs included in or specified by its
 web pages, it must be distributed as free software, and must be capable
 of running on a platform containing exclusively free software.

 	State web sites State entity web sites and network services must be
 designed so that users can use them, without disadvantage, by means of
 free software exclusively.

 	Free formats and protocols State entities must use only file formats
 and communication protocols that are well supported by free software,
 preferably with published specifications. (We do not state this in terms
 of “standards” because it should apply to nonstandardized interfaces as
 well as standardized ones.) For example, they must not distribute audio
 or video recordings in formats that require Flash or nonfree codecs,
 and public libraries must not distribute works with Digital Restrictions
 Management.

 	Untie computers from licenses Sale of computers must not require
 purchase of a proprietary software license. The seller should be required
 by law to offer the purchaser the option of buying the computer without
 the proprietary software and without paying the license fee. The imposed
 payment is a secondary wrong, and should not distract us from the
 essential injustice of proprietary software, the loss of freedom which
 results from using it. Nonetheless, the abuse of forcing users to pay
 for it gives certain proprietary software developers an additional unfair

 advantage, detrimental to users’ freedom. It is proper for the state to
 prevent this abuse.

 Computational Sovereignty

 Several policies affect the computational sovereignty of the state. State entities
must maintain control over their computing, not cede control to private hands.
These points apply to all computers, including smartphones.

 	Migrate to free software State entities must migrate to free software,
 and must not install, or continue using, any nonfree software except
 under a temporary exception. Only one agency should have the authority
 to grant these temporary exceptions, and only when shown compelling
 reasons. This agency’s goal should be to reduce the number of exceptions
 to zero.

 	Develop free IT solutions When a state entity pays for development
 of a computing solution, the contract must require it be delivered as
 free software, and that it be designed such that one can both run it and
 develop it on a 100-percent-free environment. All contracts must require
 this, so that if the developer does not comply with these requirements,
 the work cannot be paid for.

 	Choose computers for free software When a state entity buys or
 leases computers, it must choose among the models that come closest, in
 their class, to being capable of running without any proprietary software.
 The state should maintain, for each class of computers, a list of the
 models authorized based on this criterion. Models available to both the
 public and the state should be preferred to models available only to the
 state.

 	Negotiate with manufacturers The state should negotiate actively
 with manufacturers to bring about the availability in the market (to
 the state and the public) of suitable hardware products, in all pertinent
 product areas, that require no proprietary software.

 	Unite with other states The state should invite other states
 to negotiate collectively with manufacturers about suitable hardware
 products. Together they will have more clout.

 Computational Sovereignty II

 The computational sovereignty (and security) of the state includes control over
the computers that do the state’s work. This requires avoiding Service as a Software
Substitute, [3] unless the service is run by a state agency under the same branch of
government, as well as other practices that diminish the state control over its
computing. Therefore,

 	State must control its computers Every computer that the state uses
 must belong to or be leased by the same branch of government that uses
 it, and that branch must not cede to outsiders the right to decide who has
 physical access to the computer, who can do maintenance (hardware or
 software) on it, or what software should be installed in it. If the computer
 is not portable, then while in use it must be in a physical space of which
 the state is the occupant (either as owner or as tenant).

 Influence Development

 State policy affects free and nonfree software development:

 	Encourage free The state should encourage developers to create or
 enhance free software and make it available to the public, e.g. by tax
 breaks and other financial incentive. Contrariwise, no such incentives
 should be granted for development, distribution or use of nonfree
 software.

 	Don’t encourage nonfree In particular, proprietary software
 developers should not be able to “donate” copies to schools and claim a
 tax write-off for the nominal value of the software. Proprietary software
 is not legitimate in a school.

 E-Waste

 Freedom should not imply e-waste:

 	Replaceable software Many modern computers are designed to make
 it impossible to replace their preloaded software with free software. Thus,
 the only way to free them is to junk them. This practice is harmful to
 society.
 Therefore, it should be illegal, or at least substantially discouraged
 through heavy taxation, to sell, import or distribute in quantity a new
 computer (that is, not second-hand) or computer-based product for which
 secrecy about hardware interfaces or intentional restrictions prevent users
 from developing, installing and using replacements for any and all of
 the installed software that the manufacturer could upgrade. This would
 apply, in particular, to any device on which “jailbreaking” is needed to
 install a different operating system, or in which the interfaces for some
 peripherals are secret.

 Technological Neutrality

 With the measures in this article, the state can recover control over its
computing, and lead the country’s citizens, businesses and organizations towards
control over their computing. However, some object on the grounds that this would
violate the “principle” of technological neutrality.

 The idea of technological neutrality is that the state should not impose arbitrary
preferences on technical choices. Whether that is a valid principle is disputable, but
it is limited in any case to issues that are merely technical. The measures advocated
here address issues of ethical, social and political importance, so they are outside
the scope of technological neutrality. [4] Only those who wish to subjugate a country
would suggest that its government be “neutral” about its sovereignty or its citizens’
freedom.

 Endnotes

 [1] See [link] for the full definition of free software.

 [2] See
both our anti-DRM campaigns page, at http://defectivebydesign.org/what_is_drm, and
[link] for more on this issue.

 [3] See “Who Does That Server Really Serve?” ([link]) for more on SaaSS.

 [4] See my article “Technological Neutrality
and Free Software,” at http://www.gnu.org/philosophy/technological-neutrality.html,
for more on this issue.

 Chapter 7
Why Free Software Needs Free Documentation

 Copyright © 1996–2007, 2009 Free Software Foundation, Inc.
 This essay was originally published on http://gnu.org, in 1996. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

The
biggest deficiency in free operating systems is not in the software—it is the lack of
good free manuals that we can include in these systems. Many of our most
important programs do not come with full manuals. Documentation is an essential
part of any software package; when an important free software package does not
come with a free manual, that is a major gap. We have many such gaps
today.

 Once upon a time, many years ago, I thought I would learn Perl. I got a copy of
a free manual, but I found it hard to read. When I asked Perl users about
alternatives, they told me that there were better introductory manuals—but those
were not free.

 Why was this? The authors of the good manuals had written them for O’Reilly
Associates, which published them with restrictive terms—no copying, no
modification, source files not available—which exclude them from the free software
community.

 That wasn’t the first time this sort of thing has happened, and (to
our community’s great loss) it was far from the last. Proprietary manual
publishers have enticed a great many authors to restrict their manuals since
then. Many times I have heard a GNU user eagerly tell me about a manual
that he is writing, with which he expects to help the GNU Project—and
then had my hopes dashed, as he proceeded to explain that he had signed
a contract with a publisher that would restrict it so that we cannot use
it.

 Given that writing good English is a rare skill among programmers, we can ill
afford to lose manuals this way.

 Free documentation, like free software, is a matter of freedom, not price. The
problem with these manuals was not that O’Reilly Associates charged a price for
printed copies—that in itself is fine. (The Free Software Foundation sells printed
copies of free GNU manuals, too. [1]) But GNU manuals are available in source code
form, while these manuals are available only on paper. GNU manuals come with
permission to copy and modify; the Perl manuals do not. These restrictions are the
problems.

 The criterion for a free manual is pretty much the same as for free software: it is
a matter of giving all users certain freedoms. Redistribution (including commercial
redistribution) must be permitted, so that the manual can accompany every copy of
the program, on line or on paper. Permission for modification is crucial

too.

 As a general rule, I don’t believe that it is essential for people to have permission
to modify all sorts of articles and books. The issues for writings are not necessarily
the same as those for software. For example, I don’t think you or I are obliged to
give permission to modify articles like this one, which describe our actions and our
views.

 But there is a particular reason why the freedom to modify is crucial for
documentation for free software. When people exercise their right to modify the
software, and add or change its features, if they are conscientious they will change
the manual too—so they can provide accurate and usable documentation with the
modified program. A manual which forbids programmers from being conscientious
and finishing the job, or more precisely requires them to write a new manual
from scratch if they change the program, does not fill our community’s
needs.

 While a blanket prohibition on modification is unacceptable, some kinds of
limits on the method of modification pose no problem. For example, requirements to
preserve the original author’s copyright notice, the distribution terms, or the list of
authors, are OK. It is also no problem to require modified versions to include notice
that they were modified, even to have entire sections that may not be deleted or
changed, as long as these sections deal with nontechnical topics. (Some GNU
manuals have them.)

 These kinds of restrictions are not a problem because, as a practical matter,
they don’t stop the conscientious programmer from adapting the manual to fit the
modified program. In other words, they don’t block the free software community
from making full use of the manual.

 However, it must be possible to modify all the technical content of the manual,
and then distribute the result through all the usual media, through all the usual
channels; otherwise, the restrictions do block the community, the manual is not free,
and so we need another manual.

 Unfortunately, it is often hard to find someone to write another manual when a
proprietary manual exists. The obstacle is that many users think that a
proprietary manual is good enough—so they don’t see the need to write a free
manual. They do not see that the free operating system has a gap that needs
filling.

 Why do users think that proprietary manuals are good enough? Some have
not considered the issue. I hope this article will do something to change
that.

 Other users consider proprietary manuals acceptable for the same reason
so many people consider proprietary software acceptable: they judge in
purely practical terms, not using freedom as a criterion. These people are
entitled to their opinions, but since those opinions spring from values which
do not include freedom, they are no guide for those of us who do value
freedom.

 Please spread the word about this issue. We continue to lose manuals to
proprietary publishing. If we spread the word that proprietary manuals are not
sufficient, perhaps the next person who wants to help GNU by writing

documentation will realize, before it is too late, that he must above all make it
free.

 We can also encourage commercial publishers to sell free, copylefted manuals
instead of proprietary ones. [2] One way you can help this is to check the distribution
terms of a manual before you buy it, and prefer copylefted manuals to
noncopylefted ones.

 Endnotes

 [1] See http://shop.fsf.org/category/books/ and http://gnu.org/doc/doc.html.

 [2] See http://gnu.org/doc/other-free-books.html for a list of free books available from
other publishers.

 Chapter 8
Selling Free Software

 Copyright © 1996–1998, 2001, 2007, 2015 Free Software Foundation, Inc.
 This essay was originally published on http://gnu.org, in 1996. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Many
people believe that the spirit of the GNU Project is that you should not charge
money for distributing copies of software, or that you should charge as little as
possible—just enough to cover the cost. This is a misunderstanding.

 Actually, we encourage people who redistribute free software [1] to charge as much
as they wish or can. If a license does not permit users to make copies and sell
them, it is a nonfree license. If this seems surprising to you, please read
on.

 The word “free” has two legitimate general meanings; it can refer either to
freedom or to price. When we speak of “free software”, we’re talking about freedom,
not price. (Think of “free speech”, not “free beer”.) Specifically, it means that a user
is free to run the program, change the program, and redistribute the program with
or without changes.

 Free programs are sometimes distributed gratis, and sometimes for a substantial
price. Often the same program is available in both ways from different places. The
program is free regardless of the price, because users have freedom in using
it.

 Nonfree programs [2] are usually sold for a high price, but sometimes a
store will give you a copy at no charge. That doesn’t make it free software,
though. Price or no price, the program is nonfree because its users are denied
freedom.

 Since free software is not a matter of price, a low price doesn’t make the
software free, or even closer to free. So if you are redistributing copies of free
software, you might as well charge a substantial fee and make some money.
Redistributing free software is a good and legitimate activity; if you do it, you
might as well make a profit from it.

 Free software is a community project, and everyone who depends on it ought to
look for ways to contribute to building the community. For a distributor, the way to
do this is to give a part of the profit to free software development projects or to the
Free Software Foundation. This way you can advance the world of free
software.

 Distributing free software is an opportunity to raise funds for
development. Don’t waste it!

 In order to contribute funds, you need to have some extra. If you charge too low
a fee, you won’t have anything to spare to support development.

 Will a Higher Distribution Price Hurt Some Users?

 People sometimes worry that a high distribution fee will put free software out of
range for users who don’t have a lot of money. With proprietary software, a high
price does exactly that—but free software is different.

 The difference is that free software naturally tends to spread around, and there
are many ways to get it.

 Software hoarders try their damnedest to stop you from running a proprietary
program without paying the standard price. If this price is high, that does make it
hard for some users to use the program.

 With free software, users don’t have to pay the distribution fee in order to use
the software. They can copy the program from a friend who has a copy, or
with the help of a friend who has network access. Or several users can join
together, split the price of one CD-ROM, then each in turn can install the
software. A high CD-ROM price is not a major obstacle when the software is
free.

 Will a Higher Distribution Price Discourage Use of Free Software?

 Another common concern is for the popularity of free software. People think
that a high price for distribution would reduce the number of users, or that a low
price is likely to encourage users.

 This is true for proprietary software—but free software is different. With so
many ways to get copies, the price of distribution service has less effect on
popularity.

 In the long run, how many people use free software is determined mainly by how
much free software can do, and how easy it is to use. Many users do not make
freedom their priority; they may continue to use proprietary software if free
software can’t do all the jobs they want done. Thus, if we want to increase the
number of users in the long run, we should above all develop more free
software.

 The most direct way to do this is by writing needed free software [3] or manuals [4]
yourself. But if you do distribution rather than writing, the best way you can help is
by raising funds for others to write them.

 The Term “Selling Software” Can Be Confusing Too

 Strictly speaking, “selling” means trading goods for money. Selling a copy of a
free program is legitimate, and we encourage it.

 However, when people think of “selling software,” [5] they usually imagine doing it
the way most companies do it: making the software proprietary rather than
free.

 So unless you’re going to draw distinctions carefully, the way this article does,
we suggest it is better to avoid using the term “selling software” and choose some
other wording instead. For example, you could say “distributing free software for a
fee”—that is unambiguous.

 High or Low Fees, and the GNU GPL

 Except for one special situation, the GNU General Public License (GNU GPL)
has no requirements about how much you can charge for distributing a copy of free
software. You can charge nothing, a penny, a dollar, or a billion dollars. It’s up to
you, and the marketplace, so don’t complain to us if nobody wants to pay a billion
dollars for a copy.

 The one exception is in the case where binaries are distributed without the
corresponding complete source code. Those who do this are required by the GNU
GPL to provide source code on subsequent request. Without a limit on the fee [6]
for the source code, they would be able set a fee too large for anyone to
pay—such as a billion dollars—and thus pretend to release source code while in
truth concealing it. So in this case we have to limit the fee for source in
order to ensure the user’s freedom. In ordinary situations, however, there
is no such justification for limiting distribution fees, so we do not limit
them.

 Sometimes companies whose activities cross the line stated in the GNU GPL
plead for permission, saying that they “won’t charge money for the GNU software”
or such like. That won’t get them anywhere with us. Free software is about
freedom, and enforcing the GPL is defending freedom. When we defend
users’ freedom, we are not distracted by side issues such as how much of a
distribution fee is charged. Freedom is the issue, the whole issue, and the only
issue.

 Endnotes

 [1] See [link] for the full definition of free software.

 [2] Also known as “proprietary software.” See [link] for more on this category of software.

 [3] See the Savannah Task List, at http://savannah.gnu.org/projects/tasklist.

 [4] See http://gnu.org/doc/doc.html.

 [5] See [link] for more on how the expression “sell software” is ambiguous.

 [6] See section 6 of the GNU GPL ([link]).

 Chapter 9
Free Hardware and Free Hardware Designs

Copyright © 2015 Richard Stallman
 Most of this article was published in two parts on the Wired web site, as “Why We Need Free Digital Hardware
Designs” (Wired, 11 March 2015, http://wired.com/2015/03/need-free-digital-hardware-designs)
and “Hardware Designs Should Be Free. Here’s How to Do It.” (Wired, 18 March 2015,
http://wired.com/2015/03/richard-stallman-how-to-make-hardware-designs-free).
 It was published on http://gnu.org in 2015. This version is part of Free Software,
Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 To what extent do the ideas of free software extend to hardware? Is it a moral
 obligation to make our hardware designs free, just as it is to make our software
 free? Does maintaining our freedom require rejecting hardware made from
 nonfree designs?

 Definitions

 Free software is a matter of freedom, not price; broadly speaking, it means that
users are free to use the software and to copy and redistribute the software,
with or without changes. More precisely, the definition is formulated in
terms of the four essential freedoms. [1] To emphasize that “free” refers to
freedom, not price, we often use the French or Spanish word “libre” along with
“free.”

 Applying the same concept directly to hardware, free hardware means hardware
that users are free to use and to copy and redistribute with or without changes.
However, there are no copiers for hardware, aside from keys, DNA, and plastic
objects’ exterior shapes. Most hardware is made by fabrication from some sort of
design. The design comes before the hardware.

 Thus, the concept we really need is that of a free hardware design. That’s
simple: it means a design that permits users to use the design (i.e., fabricate
hardware from it) and to copy and redistribute it, with or without changes. The
design must provide the same four freedoms that define free software.

 Then we can refer to hardware made from a free design as “free hardware,” or
“free-design hardware” to avoid possible misunderstanding.

 People first encountering the idea of free software often think it means you can
get a copy gratis. Many free programs are available for zero price, since it costs you
nothing to download your own copy, but that’s not what “free” means here. (In fact,
some spyware programs such as Flash Player and Angry Birds are gratis
although they are not free.) Saying “libre” along with “free” helps clarify the
point. [2]

 For hardware, this confusion tends to go in the other direction; hardware costs
money to produce, so commercially made hardware won’t be gratis (unless it is a
loss-leader or a tie-in), but that does not prevent its design from being free/libre.
Things you make in your own 3D printer can be quite cheap, but not exactly gratis
since you will have to pay for the raw materials. In ethical terms, the freedom issue
trumps the price issue totally, since a device that denies freedom to its users is
worth less than nothing.

 The terms “open hardware” and “open source hardware” are used by
some with the same concrete meaning as “free hardware,” but those terms
downplay freedom as an issue. They were derived from the term “open source
software,” which refers more or less to free software but without talking
about freedom or presenting the issue as a matter of right or wrong. [3] To
underline the importance of freedom, we make a point of referring to freedom
whenever it is pertinent; since “open” fails to do that, let’s not substitute it for
“free.”

 Hardware and Software

 Hardware and software are fundamentally different. A program, even in
compiled executable form, is a collection of data which can be interpreted as
instruction for a computer. Like any other digital work, it can be copied and
changed using a computer. A copy of a program has no inherent physical form or
embodiment.

 By contrast, hardware is a physical structure and its physicality is crucial. While
the hardware’s design might be represented as data, in some cases even as a
program, the design is not the hardware. A design for a CPU can’t execute a
program. You won’t get very far trying to type on a design for a keyboard or
display pixels on a design for a screen.

 Furthermore, while you can use a computer to modify or copy the hardware
design, a computer can’t convert the design into the physical structure it describes.
That requires fabrication equipment.

 The Boundary between Hardware and Software

 What is the boundary, in digital devices, between hardware and software? It
follows from the definitions. Software is the operational part of a device that can be
copied and changed in a computer; hardware is the operational part that can’t be.
This is the right way to make the distinction because it relates to the practical
consequences.

 There is a gray area between hardware and software that contains firmware that
can be upgraded or replaced, but is not meant ever to be upgraded or replaced once
the product is sold. In conceptual terms, the gray area is rather narrow. In practice,
it is important because many products fall in it. We can treat that firmware as
hardware with a small stretch.

 Some have said that preinstalled firmware programs and Field-Programmable
Gate Array chips (FPGAs) “blur the boundary between hardware and software,”
but I think that is a misinterpretation of the facts. Firmware that is installed during
use is software; firmware that is delivered inside the device and can’t be changed is
software by nature, but we can treat it as if it were a circuit. As for FPGAs, the
FPGA itself is hardware, but the gate pattern that is loaded into the FPGA is a
kind of firmware.

 Running free gate patterns on FPGAs could potentially be a useful method
for making digital devices that are free at the circuit level. However, to
make FPGAs usable in the free world, we need free development tools for
them. The obstacle is that the format of the gate pattern file that gets
loaded into the FPGA is secret. For many years there was no model of
FPGA for which those files could be produced without nonfree (proprietary)
tools.

 As of 2015, free software tools are available for programming the Lattice iCE40, [4]
a common model of FPGA, from input written in a hardware description language
(HDL). It is also possible to compile C programs and run them on the Xilinx
Spartan 6 LX9 FPGA with free tools, [5] but those do not support HDL input. We
recommend that you reject other FPGA models until they too are supported by free
tools.

 As for the HDL code itself, it can act as software (when it is run on an emulator
or loaded into an FPGA) or as a hardware design (when it is realized in immutable
silicon or a circuit board).

 The Ethical Question for 3D Printers

 Ethically, software must be free; [6] a nonfree program is an injustice. Should we
take the same view for hardware designs?

 We certainly should, in the fields that 3D printing (or, more generally, any
sort of personal fabrication) can handle. Printer patterns to make a useful,
practical object (i.e., functional rather than decorative) must be free because
they are works made for practical use. Users deserve control over these
works, just as they deserve control over the software they use. Distributing
a nonfree functional object design is as wrong as distributing a nonfree
program.

 Be careful to choose 3D printers that work with exclusively free software; the
Free Software Foundation endorses such printers. [7] Some 3D printers are

made from free hardware designs, but MakerBot’s hardware designs are
nonfree. [8]

 Must We Reject Nonfree Digital Hardware?

 Is a nonfree digital [9] hardware design an injustice? Must we, for our freedom’s
sake, reject all digital hardware made from nonfree designs, as we must reject
nonfree software?

 Due to the conceptual parallel between hardware designs and software source
code, many hardware hackers are quick to condemn nonfree hardware designs just
like nonfree software. I disagree because the circumstances for hardware and
software are different.

 Present-day chip and board fabrication technology resembles the printing press:
it lends itself to mass production in a factory. It is more like copying books in 1950
than like copying software today.

 Freedom to copy and change software is an ethical imperative because those
activities are feasible for those who use software: the equipment that enables you to
use the software (a computer) is also sufficient to copy and change it. Today’s
mobile computers are too weak to be good for this, but anyone can find a computer
that’s powerful enough.

 Moreover, a computer suffices to download and run a version changed by
someone else who knows how, even if you are not a programmer. Indeed,
nonprogrammers download software and run it every day. This is why free software
makes a real difference to nonprogrammers.

 How much of this applies to hardware? Not everyone who can use digital
hardware knows how to change a circuit design, or a chip design, but anyone who
has a PC has the equipment needed to do so. Thus far, hardware is parallel to
software, but next comes the big difference.

 You can’t build and run a circuit design or a chip design in your computer.
Constructing a big circuit is a lot of painstaking work, and that’s once you have the
circuit board. Fabricating a chip is not feasible for individuals today; only mass
production can make them cheap enough. With today’s hardware technology, users
can’t download and run John H Hacker’s modified version of a digital hardware
design, as they could run John S Hacker’s modified version of a program. Thus, the
four freedoms don’t give users today collective control over a hardware design as
they give users collective control over a program. That’s where the reasoning
showing that all software must be free fails to apply to today’s hardware
technology.

 In 1983 there was no free operating system, but it was clear that if we had one,
we could immediately use it and get software freedom. All that was missing was the
code for one.

 In 2014, if we had a free design for a CPU chip suitable for a PC, mass-produced

chips made from that design would not give us the same freedom in the hardware
domain. If we’re going to buy a product mass produced in a factory, this
dependence on the factory causes most of the same problems as a nonfree design.
For free designs to give us hardware freedom, we need future fabrication
technology.

 We can envision a future in which our personal fabricators can make chips, and
our robots can assemble and solder them together with transformers, switches, keys,
displays, fans and so on. In that future we will all make our own computers
(and fabricators and robots), and we will all be able to take advantage
of modified designs made by those who know hardware. The arguments
for rejecting nonfree software will then apply to nonfree hardware designs
too.

 That future is years away, at least. In the meantime, there is no need to reject
hardware with nonfree designs on principle.

 We Need Free Digital Hardware Designs

 Although we need not reject digital hardware made from nonfree designs in
today’s circumstances, we need to develop free designs and should use them when
feasible. They provide advantages today, and in the future they may be the only
way to use free software.

 Free hardware designs offer practical advantages. Multiple companies can
fabricate one, which reduces dependence on a single vendor. Groups can
arrange to fabricate them in quantity. Having circuit diagrams or HDL
code makes it possible to study the design to look for errors or malicious
functionalities (it is known that the NSA has procured malicious weaknesses in
some computing hardware). Furthermore, free designs can serve as building
blocks to design computers and other complex devices, whose specs will
be published and which will have fewer parts that could be used against
us.

 Free hardware designs may become usable for some parts of our computers and
networks, and for embedded systems, before we are able to make entire computers
this way.

 Free hardware designs may become essential even before we can fabricate the
hardware personally, if they become the only way to avoid nonfree software. As
common commercial hardware is increasingly designed to subjugate users, it
becomes increasingly incompatible with free software, because of secret
specifications and requirements for code to be signed by someone other than you.
Cell phone modem chips and even some graphics accelerators already require
firmware to be signed by the manufacturer. Any program in your computer, that
someone else is allowed to change but you’re not, is an instrument of unjust power
over you; hardware that imposes that requirement is malicious hardware.

In the case of cell phone modem chips, all the models now available are
malicious.

 Some day, free-design digital hardware may be the only platform that permits
running a free system at all. Let us aim to have the necessary free digital designs
before then, and hope that we have the means to fabricate them cheaply enough for
all users.

 If you design hardware, please make your designs free. If you use hardware,
please join in urging and pressuring companies to make hardware designs
free.

 Levels of Design

 Software has levels of implementation; a package might include libraries,
commands and scripts, for instance. But these levels don’t make a significant
difference for software freedom because it is feasible to make all the levels free.
Designing components of a program is the same sort of work as designing the code
that combines them; likewise, building the components from source is the same sort
of operation as building the combined program from source. To make the whole
thing free simply requires continuing the work until we have done the whole
job.

 Therefore, we insist that a program be free at all levels. For a program to qualify
as free, every line of the source code that composes it must be free, so that you can
rebuild the program out of free source code alone.

 Physical objects, by contrast, are often built out of components that are
designed and build in a different kind of factory. For instance, a computer is made
from chips, but designing (or fabricating) chips is very different from designing (or
fabricating) the computer out of chips.

 Thus, we need to distinguish levels in the design of a digital product
(and maybe some other kinds of products). The circuit that connects the
chips is one level; each chip’s design is another level. In an FPGA, the
interconnection of primitive cells is one level, while the primitive cells themselves
are another level. In the ideal future we will want the design be free at all levels.
Under present circumstances, just making one level free is a significant
advance.

 However, if a design at one level combines free and nonfree parts—for example,
a “free” HDL circuit that incorporates proprietary “soft cores”—we must
conclude that the design as a whole is nonfree at that level. Likewise for
nonfree “wizards” or “macros,” if they specify part of the interconnections
of chips or programmably connected parts of chips. The free parts may
be a step towards the future goal of a free design, but reaching that goal
entails replacing the nonfree parts. They can never be admissible in the free
world.

 Licenses and Copyright for Free Hardware Designs

 You make a hardware design free by releasing it under a free license. We
recommend using the GNU General Public License, version 3 or later. We designed
GPL version 3 with a view to such use.

 Copyleft on circuits, and on nondecorative object shapes, doesn’t go as far as
one might suppose. The copyright on these designs only applies to the way the
design is drawn or written. Copyleft is a way of using copyright law, so its effect
carries only as far as copyright law carries.

 For instance, a circuit, as a topology, cannot be copyrighted (and therefore
cannot be copylefted). Definitions of circuits written in HDL can be copyrighted
(and therefore copylefted), but the copyleft covers only the details of expression of
the HDL code, not the circuit topology it generates. Likewise, a drawing or layout
of a circuit can be copyrighted, so it can be copylefted, but this only covers the
drawing or layout, not the circuit topology. Anyone can legally draw the same
circuit topology in a different-looking way, or write a different HDL definition that
produces the same circuit.

 Copyright doesn’t cover physical circuits, so when people build instances of the
circuit, the design’s license will have no legal effect on what they do with the
devices they have built.

 For drawings of objects, and 3D printer models, copyright doesn’t cover making
a different drawing of the same purely functional object shape. It also doesn’t cover
the functional physical objects made from the drawing. As far as copyright is
concerned, everyone is free to make them and use them (and that’s a freedom we
need very much). In the US, copyright does not cover the functional aspects that
the design describes, [10] but does cover decorative aspects. When one object has
decorative aspects and functional aspects, you get into tricky ground. [11] All this may
be true in your country as well, or it may not. Before producing objects
commercially or in quantity, you should consult a local lawyer. Copyright is
not the only issue you need to be concerned with. You might be attacked
using patents, most likely held by entities that had nothing to do with
making the design you’re using, and there may be other legal issues as
well.

 Keep in mind that copyright law and patent law are totally different. It is
a mistake to suppose that they have anything in common. This is why
the term “intellectual property” is pure confusion and should be totally
rejected. [12]

 Promoting Free Hardware through Repositories

 The most effective way to push for published hardware designs to be free is
through rules in the repositories where they are published. Repository operators
should place the freedom of the people who will use the designs above the
preferences of people who make the designs. This means requiring designs of useful
objects to be free, as a condition for posting them.

 For decorative objects, that argument does not apply, so we don’t have to insist
they must be free. However, we should insist that they be sharable. Thus, a
repository that handles both decorative object models and functional ones should
have an appropriate license policy for each category.

 For digital designs, I suggest that the repository insist on GNU GPL v3-or-later,
Apache 2.0, or CC-0. For functional 3D designs, the repository should ask the
design’s author to choose one of four licenses: GNU GPL v3-or-later, Apache 2.0,
CC-SA, CC-BY or CC-0. For decorative designs, it should GNU GPL v3-or-later,
Apache 2.0, CC-0, or any of the CC licenses.

 The repository should require all designs to be published as source code, and
source code in secret formats usable only by proprietary design programs is not
really adequate. For a 3D model, the STL format is not the preferred format for
changing the design and thus is not source code, so the repository should not accept
it, except perhaps accompanying real source code.

 There is no reason to choose one single format for the source code of hardware
designs, but source formats that cannot yet be handled with free software should be
accepted reluctantly at best.

 Free Hardware and Warranties

 In general, the authors of free hardware designs have no moral obligation to offer
a warranty to those that fabricate the design. This is a different issue from the sale
of physical hardware, which ought to come with a warranty from the seller and/or
the manufacturer.

 Conclusion

 We already have suitable licenses to make our hardware designs free. What we
need is to recognize as a community that this is what we should do and to insist on
free designs when we fabricate objects ourselves.

 Endnotes

 [1] See [link] for the list of the four freedoms.

 [2] For a growing list of the ways in which surveillance has spread across industries, see
http://gnu.org/philosophy/proprietary/proprietary-surveillance.html.

 [3] See “Why Open Source Misses the Point of Free Software” ([link]) for more on this issue.

 [4] See http://clifford.at/icestorm/.

 [5] See https://github.com/Wolfgang-Spraul/fpgatools.

 [6] See “Free Software Is Even More Important Now” ([link]).

 [7] See http://fsf.org/resources/hw/endorsement.

 [8] Rich Brown, “Pulling Back from Open Source Hardware, MakerBot Angers Some Adherents,”
27 September 2012, http://cnet.com/news/pulling-back-from-open-source-hardware-makerbot-angers-some-adherents/.

 [9] As used here, “digital hardware” includes hardware with some analog circuits and
components in addition to digital ones.

 [10] See the US Copyright Office definition of “useful article,” at
http://copyright.gov/register/va-useful.html.

 [11] An article by Public Knowledge (“3 Steps for Licensing Your 3D Printed Stuff,” 6 March 2015,
https://publicknowledge.org/assets/uploads/documents/3_Steps_for_Licensing_Your_3D_Printed_Stuff.pdf)
gives useful information about this complexity, for the US, though it falls into the common
mistake of using the bogus concept of “intellectual property” and the propaganda term
“protection,” which should not be used in connection with copyright. See [link] for the reason
why.

 [12] See “Did You Say ‘Intellectual Property’? It’s a Seductive Mirage” ([link]).

 Chapter 10
Applying the Free Software Criteria

 Copyright © 2015 Richard Stallman
 This article is part of Free Software, Free Society: Selected Essays of Richard M. Stallman,
3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

The four essential freedoms provide the criteria for whether a particular piece of
code is free/libre (i.e., respects its users’ freedom). [1] How should we apply them to
judge whether a software package, an operating system, a computer, or a web page
is fit to recommend?

 Whether a program is free affects first of all our decisions about our private
activities: to maintain our freedom, we need to reject the programs that would take
it away. However, it also affects what we should say to others and do with
others.

 A nonfree program is an injustice. To distribute a nonfree program, to
recommend a nonfree program to other people, or more generally steer them into a
course that leads to using nonfree software, means leading them to give up their
freedom. To be sure, leading people to use nonfree software is not the same as
installing nonfree software in their computers, but we should not lead people in the
wrong direction.

 At a deeper level, we must not present a nonfree program as a solution because
that would grant it legitimacy. Non-free software is a problem; to present it as a
solution denies the existence of the problem. [2]

 This article explains how we apply the basic free software criteria to judging
various kinds of things, so we can decide whether to recommend them or
not.

 Software Packages

 For a software package to be free, all the code in it must be free. But not only
the code. Since documentation files including manuals, README, change log, and
so on are essential technical parts of a software package, they must be free as well. [3]
A software package is typically used alongside many other packages, and interacts
with some of them. Which kinds of interaction with nonfree programs are ethically
acceptable?

 We developed GNU so that there would be a free operating system, because in
1983 none existed. As we developed the initial components of GNU, in the 1980s, it
was inevitable that each component depended on nonfree software. For
instance, no C program could run without a nonfree C compiler until GCC was

working, and none could run without Unix libc until glibc was working. Each
component could run only on nonfree systems, because all systems were
nonfree.

 After we released a component that could run on some nonfree systems, users
ported it to other nonfree systems; those ports were no worse, ethically, than the
platform-specific code we needed to develop these components, so we incorporated
their patches.

 When the kernel, Linux, was freed in 1992, it filled the last gap in the GNU
system. (Initially, in 1991, Linux had been distributed under a nonfree
license.) The combination of GNU and Linux made a complete free operating
system—GNU/Linux. [4]

 At that point, we could have deleted the support for nonfree platforms,
but we decided not to. A nonfree system is an injustice, but it’s not our
fault a user runs one. Supporting a free program on that system does not
compound the injustice. And it’s useful, not only for users of those systems,
but also for attracting more people to contribute to developing the free
program.

 However, a nonfree program that runs on top of a free program is a completely
different issue, because it leads users to take a step away from freedom. In some
cases we disallow this: for instance, GCC prohibits nonfree plug-ins. [5] When a
program permits nonfree add-ons, it should at least not steer people towards
using them. For instance, we choose LibreOffice over OpenOffice because
OpenOffice suggests use of nonfree add-ons, while LibreOffice shuns them. We
developed IceCat [6] initially to avoid proposing the nonfree add-ons suggested by
Firefox.

 In practice, if the IceCat package explains how to run IceCat on MacOS, that
will not lead people to run MacOS. But if it talked about some nonfree add-on,
that would encourage IceCat users to install the add-on. Therefore, the
IceCat package, including manuals and web site, shouldn’t talk about such
things.

 Sometimes a free program and a nonfree program interoperate but neither is
based on the other. Our rule for such cases is that if the nonfree program is
very well known, we should tell people how to use our free program with
it; but if the proprietary program is obscure, we should not hint that it
exists. Sometimes we support interoperation with the nonfree program
if that is installed, but avoid telling users about the possibility of doing
so.

 We reject “enhancements” that would work only on a nonfree system. Those
would encourage people to use the nonfree system instead of GNU, scoring an
own-goal.

 GNU/Linux Distros

 After the liberation of Linux in 1992, people began developing GNU/Linux
distributions (“distros”). Only a few distros are entirely free software.

 The rules for a software package apply to a distro too: an ethical distro must
contain only free software and steer users only towards free software. But what does
it mean for a distro to “contain” a particular software package?

 Some distros install programs from binary packages that are part of the distro;
others build each program from upstream source, and literally contain only the
recipes to download and build it. For issues of freedom, how a distro installs a given
package is not significant; if it presents that package as an option, or its web site
does, we say it “contains” that package.

 The users of a free system have control over it, so they can install whatever they
wish. Free distros provide general facilities with which users can install their own
programs and their modified versions of free programs; they can also install nonfree
programs. Providing these general facilities is not an ethical flaw in the distro,
because the distro’s developers are not responsible for what users get and install on
their own initiative.

 The developers become responsible for installation of nonfree software when they
steer the users toward a nonfree program—for instance, by putting it in the distro’s
list of packages, or distributing it from their server, or presenting it as a solution
rather than a problem. This is the point where most GNU/Linux distros have an
ethical flaw.

 People who install software packages on their own have a certain level of
sophistication: if we tell them “Baby contains nonfree code, but Gbaby is
free,” we can expect them to take care to remember which is which. But
distros are recommended to ordinary users who would forget such details.
They would think, “What name did they say I should use? I think it was
Baby.”

 Therefore, to recommend a distro to the general public, we insist that its name
not be similar to a distro we reject, so our message recommending only the free
distro can be reliably transmitted.

 Another difference between a distro and a software package is how likely it is for
nonfree code to be added. The developers of a program carefully check the code
they add. If they have decided to make the program free, they are unlikely to add
nonfree code. There have been exceptions, including the very harmful case of the
“binary blobs” that were added to Linux, but they are a small fraction of the free
programs that exist.

 By contrast, a GNU/Linux distro typically contains thousands of packages, and
the distro’s developers may add hundreds of packages a year. Without a
careful effort to avoid packages that contain some nonfree software, some will
surely creep in. Since the free distros are few in number, as a condition
for listing that distro, we ask the developers of each free distro to make
a commitment to keep the distro free software by removing any nonfree
code or malware. See the GNU free system distribution guidelines, at
http://gnu.org/distros/free-system-distribution-guidelines.html.

 We don’t ask for such promises for free software packages: it’s not feasible, and

fortunately not necessary. To get promises from the developers of 30,000 free
programs to keep them free would avoid a few problems, at the cost of much work
for the FSF staff; in addition, most of those developers have no relationship with
the GNU Project and might have no interest in making us any promises. So we deal
with the rare cases that change from free to nonfree, when we find out about
them.

 Peripherals

 A computer peripheral needs software in the computer—perhaps a driver,
perhaps firmware to be loaded by the system into the peripheral to make
it run. Thus, a peripheral is acceptable to use and recommend if it can
be used from a computer that has no nonfree software installed—if the
peripheral’s driver, and any firmware that the system needs to load into it, are
free.

 It is simple to check this: connect the peripheral to a computer running a totally
free GNU/Linux distro and see if it works. But most users would like to
know before they buy the peripheral, so we list information about many
peripherals in h-node.org, a hardware database for fully free operating
systems.

 Computers

 A computer contains software at various levels. On what criterion should we
certify that a computer “Respects Your Freedom”?

 Obviously the operating system and everything above it must be free. In the 90s,
the startup software (BIOS, then) became replaceable, and since it runs on the
CPU, it is the same sort of issue as the operating system. Thus, programs such as
firmware and drivers that are installed in or with the system or the startup software
must be free.

 If a computer has hardware features that require nonfree drivers or firmware
installed with the system, we may be able to endorse it. If it is usable without those
features, and if we think most people won’t be led to install the nonfree software to
make them function, then we can endorse it. Otherwise, we can’t. This will be a
judgment call.

 A computer can have modifiable preinstalled firmware and microcode at lower
levels. It can also have code in true read-only memory. We decided to ignore these
programs in our certification criteria today, because otherwise no computer could
comply, and because firmware that is not normally changed is ethically equivalent to

circuits. So our certification criteria cover only the code that runs on the computer’s
main processor and is not in true read-only memory. When and as free software
becomes possible for other levels of processing, we will require free software at those
levels too.

 Since certifying a product is active promotion of it, we insist that the seller
support us in return, by talking about free software rather than open source [7] and
referring to the combination of GNU and Linux as “GNU/Linux.” [8] We have no
obligation to actively promote projects that won’t recognize our work and support
our movement.

 See http://www.fsf.org/resources/hw/endorsement/criteria for our
certification criteria.

 Web Pages

 Nowadays many web pages contain complex JavaScript programs and won’t
work without them. This is a harmful practice since it hampers users’ control over
their computing. Furthermore, most of these programs are nonfree, an injustice.
Often the JavaScript code spies on the user. [9] JavaScript has morphed into a attack
on users’ freedom.

 To address this problem, we have developed LibreJS, an add-on for Firefox that
blocks nontrivial nonfree JavaScript code. (There is no need to block the
simple scripts that implement minor user interface hacks.) We ask sites to
please free their JavaScript programs and mark their licenses for LibreJS to
recognize.

 Meanwhile, is it ethical to link to a web page that contains a nonfree JavaScript
program? If we were totally unyielding, we would link only to free JavaScript code.
However, many pages do work even when their JavaScript code is not run. Also, you
will most often encounter nonfree JavaScript in other ways besides following
our links; to avoid it, you must use LibreJS or disable JavaScript. So we
have decided to go ahead and link to pages that work without nonfree
JavaScript, while urging users to protect themselves from nonfree JavaScript in
general.

 However, if a page can’t do its job without running the nonfree JavaScript code,
linking to it undeniably asks people to run that nonfree code. On principle, we do
not link to such pages.

 Conclusion

 Applying the basic idea that software should be free to different situations leads
to different practical policies. As new situations arise, the GNU Project and the
Free Software Foundation will adapt our freedom criteria so as to lead
computer users towards freedom, in practice and in principle. By recommending
only freedom-respecting programs, distros, and hardware products, and
stating your policy, you can give much-needed support to the free software
movement.

 Endnotes

 [1] See [link] for the full definition of free software.

 [2] My article “Avoiding Ruinous Compromises” ([link]) elaborates on this issue.

 [3] See “Free Software Needs Free Documentation” ([link]) for more on this issue.

 [4] See “Linux and the GNU System” ([link]) for information.

 [5] For the reason why GCC prohibits nonfree plug-ins, see my response on the GCC mailing
list, at https://gcc.gnu.org/ml/gcc/2014-01/msg00247.html.

 [6] See http://directory.fsf.org/wiki/IceCat.

 [7] See “Free Software Is Even More Important Now” ([link]) and “Why Open Source Misses
the Point of Free Software” ([link]).

 [8] See “What’s in a Name” ([link]).

 [9] See “The JavaScript Trap” ([link]).

 Part II
Part II: What’s in a Name?

 11 What’s in a Name?

 12 Linux and the GNU System

 13 Categories of Free and Nonfree Software

 14 Why Open Source Misses the Point of Free Software

 15 Did You Say “Intellectual Property”? It’s a Seductive Mirage

 16 Why Call It the Swindle?

 17 Words to Avoid (or Use with Care) Because They Are Loaded or Confusing

 Chapter 11
What’s in a Name?

 Copyright © 2000, 2006, 2007 Richard Stallman
 This essay was originally published on http://gnu.org, in 2000. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Names
convey meanings; our choice of names determines the meaning of what we say. An
inappropriate name gives people the wrong idea. A rose by any other name would
smell as sweet—but if you call it a pen, people will be rather disappointed
when they try to write with it. And if you call pens “roses,” people may not
realize what they are good for. If you call our operating system Linux, that
conveys a mistaken idea of the system’s origin, history, and purpose. If
you call it GNU/Linux, that conveys (though not in detail) an accurate
idea.

 Does this really matter for our community? Is it important whether people know
the system’s origin, history, and purpose? Yes—because people who forget
history are often condemned to repeat it. The Free World that has developed
around GNU/Linux is not guaranteed to survive; the problems that led us to
develop GNU are not completely eradicated, and they threaten to come
back.

 When I explain why it’s appropriate to call the operating system GNU/Linux
rather than Linux, people sometimes respond this way:

 Granted that the GNU Project deserves credit for this work, is it really
 worth a fuss when people don’t give credit? Isn’t the important thing that the
 job was done, not who did it? You ought to relax, take pride in the job well
 done, and not worry about the credit.

 This would be wise advice, if only the situation were like that—if the job
were done and it were time to relax. If only that were true! But challenges
abound, and this is no time to take the future for granted. Our community’s

strength rests on commitment to freedom and cooperation. Using the name
GNU/Linux is a way for people to remind themselves and inform others of these
goals.

 It is possible to write good free software without thinking of GNU; much good
work has been done in the name of Linux also. But the term “Linux” has been
associated ever since it was first coined with a philosophy that does not make a
commitment to the freedom to cooperate. As the name is increasingly used by
business, we will have even more trouble making it connect with community
spirit.

 A great challenge to the future of free software comes from the tendency of the
“Linux” distribution companies to add nonfree software to GNU/Linux in the name
of convenience and power. All the major commercial distribution developers do this;
none limits itself to free software. Most of them do not clearly identify the nonfree
packages in their distributions. Many even develop nonfree software and
add it to the system. Some outrageously advertise “Linux” systems that
are “licensed per seat,” which give the user as much freedom as Microsoft
Windows.

 People try to justify adding nonfree software in the name of the “popularity of
Linux”—in effect, valuing popularity above freedom. Sometimes this is openly
admitted. For instance, Wired magazine said that Robert McMillan, editor of Linux
Magazine, “feels that the move toward open source software should be fueled by
technical, rather than political, decisions.”And Caldera’s CEO openly urged
users to drop the goal of freedom and work instead for the “popularity of
Linux.” [1]

 Adding nonfree software to the GNU/Linux system may increase the popularity,
if by popularity we mean the number of people using some of GNU/Linux in
combination with nonfree software. But at the same time, it implicitly
encourages the community to accept nonfree software as a good thing, and forget
the goal of freedom. It is not good to drive faster if you can’t stay on the
road.

 When the nonfree “add-on” is a library or programming tool, it can become a
trap for free software developers. When they write free software that depends on the
nonfree package, their software cannot be part of a completely free system. Motif
and Qt trapped large amounts of free software in this way in the past,
creating problems whose solutions took years. Motif remained somewhat of a
problem until it became obsolete and was no longer used. Later, Sun’s
nonfree

 Java implementation had a similar effect: the Java Trap, [2] fortunately now
mostly corrected. If our community keeps moving in this direction, it could redirect
the future of GNU/Linux into a mosaic of free and nonfree components. Five years
from now, we will surely still have plenty of free software; but if we are not
careful, it will hardly be usable without the nonfree software that users
expect to find with it. If this happens, our campaign for freedom will have
failed.

 If releasing free alternatives were simply a matter of programming, solving
future problems might become easier as our community’s development resources

increase. But we face obstacles that threaten to make this harder: laws that
prohibit free software. As software patents mount up, and as laws like the
Digital Millennium Copyright Act are used to prohibit the development of
free software for important jobs such as viewing a DVD or listening to a
RealAudio stream, we will find ourselves with no clear way to fight the
patented and secret data formats except to reject the nonfree programs that use
them.

 Meeting these challenges will require many different kinds of effort. But what
we need above all, to confront any kind of challenge, is to remember the
goal of freedom to cooperate. We can’t expect a mere desire for powerful,
reliable software to motivate people to make great efforts. We need the
kind of determination that people have when they fight for their freedom
and their community—determination to keep on for years and not give
up.

 In our community, this goal and this determination emanate mainly from the
GNU Project. We’re the ones who talk about freedom and community as something
to stand firm for; the organizations that speak of “Linux” normally don’t say this.
The magazines about “Linux” are typically full of ads for nonfree software;
the companies that package “Linux” add nonfree software to the system;
other companies “support Linux” by developing nonfree applications to run
on GNU/Linux; the user groups for “Linux” typically invite salesmen to
present those applications. The main place people in our community are
likely to come across the idea of freedom and determination is in the GNU
Project.

 But when people come across it, will they feel it relates to them?

 People who know they are using a system that came out of the GNU Project can
see a direct relationship between themselves and GNU. They won’t automatically
agree with our philosophy, but at least they will see a reason to think seriously
about it. In contrast, people who consider themselves “Linux users,” and
believe that the GNU Project “developed tools which proved to be useful in
Linux,” typically perceive only an indirect relationship between GNU and
themselves. They may just ignore the GNU philosophy when they come across
it.

 The GNU Project is idealistic, and anyone encouraging idealism today faces a
great obstacle: the prevailing ideology encourages people to dismiss idealism as
“impractical.” Our idealism has been extremely practical: it is the reason we have a
free GNU/Linux operating system. People who love this system ought to know that
it is our idealism made real.

 If “the job” really were done, if there were nothing at stake except credit,
perhaps it would be wiser to let the matter drop. But we are not in that position.
To inspire people to do the work that needs to be done, we need to be recognized
for what we have already done. Please help us, by calling the operating system
GNU/Linux.

 Endnotes

 [1] Dietmar Muller, “Stallman: Love Is Not Free,” 10 July 2001,
http://zdnet.com/article/stallman-love-is-not-free/.

 [2]
See “Free but Shackled—The Java Trap,” at http://gnu.org/philosophy/java-trap.html,
for more on this issue.

 Chapter 12
Linux and the GNU System

 Copyright © 1997–2002, 2007, 2014 Richard Stallman
 This essay was originally published on http://gnu.org, in 1997. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Many computer users run a modified version of the GNU system [1] every day,
without realizing it. Through a peculiar turn of events, the version of GNU
which is widely used today is often called “Linux,” and many of its users are
not aware that it is basically the GNU system, developed by the GNU
Project. [2]

 There really is a Linux, and these people are using it, but it is just a part of the
system they use. Linux is the kernel: the program in the system that allocates the
machine’s resources to the other programs that you run. The kernel is an essential
part of an operating system, but useless by itself; it can only function in the context
of a complete operating system. Linux is normally used in combination with the
GNU operating system: the whole system is basically GNU with Linux added, or
GNU/Linux. All the so-called “Linux” distributions are really distributions of
GNU/Linux.

 Many users do not understand the difference between the kernel, which is Linux,
and the whole system, which they also call “Linux.” The ambiguous use of
the name doesn’t help people understand. These users often think that
Linus Torvalds developed the whole operating system in 1991, with a bit of
help.

 Programmers generally know that Linux is a kernel. But since they have
generally heard the whole system called “Linux” as well, they often envisage a
history that would justify naming the whole system after the kernel. For example,
many believe that once Linus Torvalds finished writing Linux, the kernel, its users
looked around for other free software to go with it, and found that (for no particular
reason) most everything necessary to make a Unix-like system was already
available.

 What they found was no accident—it was the not-quite-complete GNU system.
The available free software [3] added up to a complete system because the GNU
Project had been working since 1984 to make one. In the GNU Manifesto [4] we set
forth the goal of developing a free Unix-like system, called GNU. The Initial
Announcement [5] of the GNU Project also outlines some of the original plans
for the GNU system. By the time Linux was started, GNU was almost
finished.

 Most free software projects have the goal of developing a particular program for
a particular job. For example, Linus Torvalds set out to write a Unix-like kernel
(Linux); Donald Knuth set out to write a text formatter (TEX); Bob Scheifler set

out to develop a window system (the X Window System). It’s natural to measure
the contribution of this kind of project by specific programs that came from the
project.

 If we tried to measure the GNU Project’s contribution in this way, what would
we conclude? One CD-ROM vendor found that in their “Linux distribution,” GNU
software [6] was the largest single contingent, around 28 percent of the total source
code, and this included some of the essential major components without which there
could be no system. Linux itself was about 3 percent. (The proportions in 2008 are
similar: in the “main” repository of gNewSense, Linux is 1.5 percent and GNU
packages are 15 percent.) So if you were going to pick a name for the system based
on who wrote the programs in the system, the most appropriate single choice would
be “GNU.”

 But that is not the deepest way to consider the question. The GNU
Project was not, is not, a project to develop specific software packages.
It was not a project to develop a C compiler, [7] although we did that. It
was not a project to develop a text editor, although we developed one.
The GNU Project set out to develop a complete free Unix-like system:
GNU.

 Many people have made major contributions to the free software in the system,
and they all deserve credit for their software. But the reason it is an integrated
system—and not just a collection of useful programs—is because the GNU
Project set out to make it one. We made a list of the programs needed to
make a complete free system, and we systematically found, wrote, or found
people to write everything on the list. We wrote essential but unexciting [8]
components because you can’t have a system without them. Some of our system
components, the programming tools, became popular on their own among
programmers, but we wrote many components that are not tools. [9] We even
developed a chess game, GNU Chess, because a complete system needs games
too.

 By the early 90s we had put together the whole system aside from the kernel. We had
also started a kernel, the GNU Hurd (http://gnu.org/software/hurd/hurd.html),
which runs on top of Mach. Developing this kernel has been a lot harder than we
expected; the GNU Hurd started working reliably in 2001, but it is a long way from
being ready for people to use in general. [10]

 Fortunately, we didn’t have to wait for the Hurd, because of Linux. Once
Torvalds freed Linux in 1992, it fit into the last major gap in the GNU system.
People could then combine Linux with the GNU system [11] to make a complete free
system—a version of the GNU system which also contained Linux. The GNU/Linux
system, in other words.

 Making them work well together was not a trivial job. Some GNU components [12]
needed substantial change to work with Linux. Integrating a complete system as a
distribution that would work “out of the box” was a big job, too. It required
addressing the issue of how to install and boot the system—a problem we had not
tackled, because we hadn’t yet reached that point. Thus, the people who
developed the various system distributions did a lot of essential work. But it
was work that, in the nature of things, was surely going to be done by

someone.

 The GNU Project supports GNU/Linux systems as well as the GNU system.
The FSF funded the rewriting of the Linux-related extensions to the GNU C
Library, so that now they are well integrated, and the newest GNU/Linux systems
use the current library release with no changes. The FSF also funded an early stage
of the development of Debian GNU/Linux.

 Today there are many different variants of the GNU/Linux system (often called
“distros”). Most of them include nonfree software—their developers follow the
philosophy associated with Linux rather than that of GNU. But there are also
completely free GNU/Linux distros. [13] The FSF supports computer facilities for
gNewSense (http://gnewsense.org).

 Making a free GNU/Linux distribution is not just a matter of eliminating
various nonfree programs. Nowadays, the usual version of Linux contains nonfree
programs too. These programs are intended to be loaded into I/O devices when the
system starts, and they are included, as long series of numbers, in the “source code”
of Linux. Thus, maintaining free GNU/Linux distributions now entails
maintaining a free version of Linux (http://directory.fsf.org/project/linux)
too.

 Whether you use GNU/Linux or not, please don’t confuse the public by using
the name “Linux” ambiguously. Linux is the kernel, one of the essential major
components of the system. The system as a whole is basically the GNU system,
with Linux added. When you’re talking about this combination, please call it
“GNU/Linux.”

 This article and “The GNU Project” ([link]) are good choices for promoting
“GNU/Linux.” If you mention Linux, the kernel, and want to add a further
reference, the FOLDOC (the Free On-Line Dictionary of Computing) web address,
http://foldoc.org/linux, is a good URL to use.

 Postscripts

 Aside from GNU, one other project has independently produced a free Unix-like
operating system. This system is known as BSD, and it was developed at UC
Berkeley. It was nonfree in the 80s, but became free in the early 90s. A free
operating system that exists today is almost certainly either a variant of the GNU
system, or a kind of BSD system. [14]

 People sometimes ask whether BSD too is a version of GNU, like GNU/Linux.
The BSD developers were inspired to make their code free software by the example
of the GNU Project, and explicit appeals from GNU activists helped persuade
them, but the code had little overlap with GNU. BSD systems today use
some GNU programs, just as the GNU system and its variants use some
BSD programs; however, taken as wholes, they are two different systems
that evolved separately. The BSD developers did not write a kernel and
add it to the GNU system, and a name like GNU/BSD would not fit the
situation. [15]

 Endnotes

 [1] See [link] for information on GNU system.

 [2] For more information, see both “GNU Users Who Have Never Heard of GNU,”
at http://gnu.org/gnu/gnu-users-never-heard-of-gnu.html, and “Overview of the GNU
System,” at http://gnu.org/gnu/gnu-history.html.

 [3] See [link] for the full definition of free software.

 [4] See http://gnu.org/gnu/manifesto.html for the “GNU Manifesto.”

 [5] See [link] for the “Initial Announcement.”

 [6] See [link] for more information on GNU software.

 [7] See http://gnu.org/software/gcc/ for the GCC homepage.

 [8] These unexciting but essential components include the GNU assembler (GAS)
and the linker (GNU ld), both are now part of the GNU Binutils package
(http://gnu.org/software/binutils/), GNU tar (http://gnu.org/software/tar/), and
many more.

 [9] For instance, The Bourne Again Shell (BASH), the PostScript interpreter Ghostscript
(http://gnu.org/software/ghostscript/ghostscript.html), and the GNU C Library
(http://gnu.org/software/libc/libc.html) are not programming tools. Neither are
GNUCash, GNOME, and GNU Chess.

 [10] See http://gnu.org/software/hurd/hurd-and-linux.html for why the FSF developed
the GNU Hurd kernel.

 [11] See “Notes for Linux Release 0.01,” at
http://ftp.funet.fi/pub/linux/historical/kernel/old-versions/RELNOTES-0.01.

 [12] For instance, the GNU C Library (http://gnu.org/software/libc/libc.html).

 [13] See http://gnu.org/distros/ for a list of all the completely free distributions we know
about.

 [14] Since that was written, a nearly-all-free Windows-like system has been developed, but
technically it is not at all like GNU or Unix, so it doesn’t really affect this issue. Most of the
kernel of Solaris has been made free, but if you wanted to make a free system out of that,
aside from replacing the missing parts of the kernel, you would also need to put it into GNU
or BSD.

 [15] On the other hand, in the years since this article was written, the GNU C Library has
been ported to several versions of the BSD kernel, which made it straightforward to combine
the GNU system with that kernel. Just as with GNU/Linux, these are indeed variants of
GNU, and are therefore called, for instance, GNU/kFreeBSD and GNU/kNetBSD depending
on the kernel of the system. Ordinary users on typical desktops can hardly distinguish
between GNU/Linux and GNU/*BSD.

 Chapter 13
Categories of Free and Nonfree Software

 Copyright © 1996–1998, 2001, 2006, 2007, 2009, 2011, 2012, 2014, 2015 Free Software
Foundation, Inc.
 This list was originally published on http://gnu.org, in 1996. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

[image: The categories of software]

 This diagram, originally by Chao-Kuei and updated by several others since,
 explains the different categories of software. It’s available as a Scalable Vector
 Graphic, at http://gnu.org/philosophy/category.svg, and as an XFig
 document, at http://gnu.org/philosophy/category.fig, under the terms
 of any of the GNU GPL v2-or-later, the GNU FDL v1.2-or-later, or the
 Creative Commons Attribution-Share Alike v2.0-or-later.

 Free Software

 Free software is software that comes with permission for anyone to use, copy,
and/or distribute, either verbatim or with modifications, either gratis or for a fee. In
particular, this means that source code must be available. “If it’s not source, it’s not
software.” This is a simplified description; see also the full definition, on
[link].

 If a program is free, then it can potentially be included in a free operating
system such as GNU, or free versions of the GNU/Linux system. [1]

 There are many different ways to make a program free—many questions
of detail, which could be decided in more than one way and still make
the program free. Some of the possible variations are described below. For
information on specific free software licenses, see the license list page, at
http://gnu.org/licenses/license-list.html.

 Free software is a matter of freedom, not price. But proprietary software
companies typically use the term “free software” to refer to price. Sometimes they
mean that you can obtain a binary copy at no charge; sometimes they mean that a
copy is bundled with a computer that you are buying, and the price includes both.
Either way, it has nothing to do with what we mean by free software in the GNU
Project.

 Because of this potential confusion, when a software company says its product is
free software, always check the actual distribution terms to see whether users really
have all the freedoms that free software implies. Sometimes it really is free software;
sometimes it isn’t.

 Many languages have two separate words for “free” as in freedom and “free” as in
zero price. For example, French has “libre” and “gratuit.” Not so English; there is a
word “gratis” that refers unambiguously to price, but no common adjective that
refers unambiguously to freedom. So if you are speaking another language, we
suggest you translate “free” into your language to make it clearer. See our
list of translations of the term “free software” into various other languages
([link]).

 Free software is often more reliable than nonfree software. [2]

 Open Source Software

 The term “open source” software is used by some people to mean more or less
the same category as free software. It is not exactly the same class of software: they
accept some licenses that we consider too restrictive, and there are free software
licenses they have not accepted. However, the differences in extension of the
category are small: nearly all free software is open source, and nearly all open source
software is free.

 We prefer the term “free software” because it refers to freedom—something that
the term “open source” does not do. [3]

 Public Domain Software

 Public domain software is software that is not copyrighted. If the source code is
in the public domain, that is a special case of noncopylefted free software,

which means that some copies or modified versions may not be free at
all.

 In some cases, an executable program can be in the public domain but the
source code is not available. This is not free software, because free software requires
accessibility of source code. Meanwhile, most free software is not in the
public domain; it is copyrighted, and the copyright holders have legally
given permission for everyone to use it in freedom, using a free software
license.

 Sometimes people use the term “public domain” in a loose fashion to mean
“free” or “available gratis.” However, “public domain” is a legal term and
means, precisely, “not copyrighted.” For clarity, we recommend using “public
domain” for that meaning only, and using other terms to convey the other
meanings.

 Under the Berne Convention, which most countries have signed, anything
written down is automatically copyrighted. This includes programs. Therefore, if
you want a program you have written to be in the public domain, you must take
some legal steps to disclaim the copyright on it; otherwise, the program is
copyrighted.

 Copylefted Software

 Copylefted software is free software whose distribution terms ensure that all
copies of all versions carry more or less the same distribution terms. This means, for
instance, that copyleft licenses generally disallow others to add additional
requirements to the software (though a limited set of safe added requirements can
be allowed) and require making source code available. This shields the program, and
its modified versions, from some of the common ways of making a program
proprietary.

 Some copyleft licenses, such as GPL version 3, block other means of turning
software proprietary, such as tivoization. [4]

 In the GNU Project, we copyleft almost all the software we write, because our
goal is to give every user the freedoms implied by the term “free software.” See our
copyleft article ([link]) for more explanation of how copyleft works and why we use
it.

 Copyleft is a general concept; to copyleft an actual program, you need to use a
specific set of distribution terms. There are many possible ways to write copyleft
distribution terms, so in principle there can be many copyleft free software licenses.
However, in actual practice nearly all copylefted software uses the GNU General
Public License. Two different copyleft licenses are usually “incompatible,” which
means it is illegal to merge the code using one license with the code using the other
license; therefore, it is good for the community if people use a single copyleft
license.

 Noncopylefted Free Software

 Noncopylefted free software comes from the author with permission to
redistribute and modify, and also to add additional restrictions to it.

 If a program is free but not copylefted, then some copies or modified versions
may not be free at all. A software company can compile the program, with or
without modifications, and distribute the executable file as a proprietary software
product.

 The X Window System illustrates this. The X Consortium released X11 with
distribution terms that made it noncopylefted free software, and subsequent
developers have mostly followed the same practice. A copy which has those
distribution terms is free software. However, there are nonfree versions as well, and
there are (or at least were) popular workstations and PC graphics boards for which
nonfree versions are the only ones that work. If you are using this hardware, X11 is
not free software for you. The developers of X11 even made X11 nonfree for a
while; [5] they were able to do this because others had contributed their code under
the same noncopyleft license.

 Lax Permissive Licensed Software

 Lax permissive licenses include the X11 license and the two BSD licenses. [6] These
licenses permit almost any use of the code, including distributing proprietary
binaries with or without changing the source code.

 GPL-Covered Software

 The GNU GPL (General Public License) is one specific set of distribution terms
for copylefting a program. The GNU Project uses it as the distribution terms for
most GNU software.

 To equate free software with GPL-covered software is therefore an error.

 The GNU Operating System

 The GNU operating system is the Unix-like operating system, which is
entirely free software, that we in the GNU Project have developed since
1984. [7]

 A Unix-like operating system consists of many programs. The GNU
system includes all of the official GNU packages. It also includes many other
packages, such as the X Window System and TeX, which are not GNU
software.

 The first test release of the complete GNU system was in 1996. This includes the
GNU Hurd, our kernel, developed since 1990. In 2001 the GNU system (including
the GNU Hurd) began working fairly reliably, but the Hurd still lacks some
important features, so it is not widely used. Meanwhile, the GNU/Linux system, an
offshoot of the GNU operating system which uses Linux as the kernel instead of the
GNU Hurd, has been a great success since the 90s. [8] As this shows, the GNU system
is not a single static set of programs; users and distributors may select different
packages according to their needs and desires. The result is still a variant of the
GNU system.

 Since the purpose of GNU is to be free, every single component in the GNU
operating system is free software. They don’t all have to be copylefted, however; any
kind of free software is legally suitable to include if it helps meet technical
goals.

 GNU Programs

 “GNU programs” is equivalent to GNU software. A program Foo is a
GNU program if it is GNU software. We also sometimes say it is a “GNU
package.”

 GNU Software

 “GNU software” is software that is released under the auspices of the
GNU Project. [9] If a program is GNU software, we also say that it is a GNU
program or a GNU package. The README or manual of a GNU package
should say it is one; also, the Free Software Directory [10] identifies all GNU
packages.

 Most GNU software is copylefted, but not all; however, all GNU software must
be free software.

 Some GNU software was written by staff of the Free Software Foundation, but
most GNU software comes from many volunteers. [11] (Some of these volunteers are
paid by companies or universities, but they are volunteers for us.) Some contributed
software is copyrighted by the Free Software Foundation; some is copyrighted by the
contributors who wrote it.

 FSF-Copyrighted GNU Software

 The developers of GNU packages can transfer the copyright to the FSF, or they
can keep it. The choice is theirs.

 If they have transferred the copyright to the FSF, the program is FSF-copyrighted
GNU software, and the FSF can enforce its license. If they have kept the copyright,
enforcing the license is their responsibility.

 The FSF does not accept copyright assignments of software that is not an official
GNU package, as a rule.

 Nonfree Software

 Nonfree software is any software that is not free. Its use, redistribution or
modification is prohibited, or requires you to ask for permission, or is restricted so
much that you effectively can’t do it freely.

 Proprietary Software

 Proprietary software is another name for nonfree software. In the past we
subdivided nonfree software into “semifree software,” which could be modified and
redistributed noncommercially, and “proprietary software,” which could not be. But
we have dropped that distinction and now use “proprietary software” as synonymous
with nonfree software.

 The Free Software Foundation follows the rule that we cannot install any
proprietary program on our computers except temporarily for the specific purpose
of writing a free replacement for that very program. Aside from that, we feel there is
no possible excuse for installing a proprietary program.

 For example, we felt justified in installing Unix on our computer in the 1980s,
because we were using it to write a free replacement for Unix. Nowadays, since free
operating systems are available, the excuse is no longer applicable; we do not use
any nonfree operating systems, and any new computer we install must run a
completely free operating system.

 We don’t insist that users of GNU, or contributors to GNU, have to live by this
rule. It is a rule we made for ourselves. But we hope you will follow it too, for your
freedom’s sake.

 Freeware

 The term “freeware” has no clear accepted definition, but it is commonly used
for packages which permit redistribution but not modification (and their source
code is not available). These packages are not free software, so please don’t use
“freeware” to refer to free software.

 Shareware

 Shareware is software which comes with permission for people to redistribute
copies, but says that anyone who continues to use a copy is required to pay a license
fee.

 Shareware is not free software, or even semifree. There are two reasons it is
not:

 	For most shareware, source code is not available; thus, you cannot modify
 the program at all.

 	Shareware does not come with permission to make a copy and install
 it without paying a license fee, not even for individuals engaging in
 nonprofit activity. (In practice, people often disregard the distribution
 terms and do this anyway, but the terms don’t permit it.)

 Private software

 Private or custom software is software developed for one user (typically an
organization or company). That user keeps it and uses it, and does not release it to
the public either as source code or as binaries.

 A private program is free software (in a somewhat trivial sense) if its sole user
has the four freedoms. In particular, if the user has full rights to the private
program, the program is free. However, if the user distributes copies to others and
does not provide the four freedoms with those copies, those copies are not free
software.

 Free software is a matter of freedom, not access. In general we do not believe it
is wrong to develop a program and not release it. There are occasions when a
program is so important that one might argue that withholding it from the public is
doing wrong to humanity. However, such cases are rare. Most programs are not that
important, and declining to release them is not particularly wrong. Thus, there is no
conflict between the development of private or custom software and the principles of
the free software movement.

 Nearly all employment for programmers is in development of custom software;
therefore most programming jobs are, or could be, done in a way compatible with
the free software movement.

 Commercial Software

 “Commercial” and “proprietary” are not the same! Commercial software is
software developed by a business as part of its business. Most commercial software
is proprietary, but there is commercial free software, and there is noncommercial
nonfree software.

 For example, GNU Ada is developed by a company. It is always distributed
under the terms of the GNU GPL, and every copy is free software; but its
developers sell support contracts. When their salesmen speak to prospective
customers, sometimes the customers say, “We would feel safer with a commercial
compiler.” The salesmen reply, “GNU Ada is a commercial compiler; it happens
to be free software.” For the GNU Project, the priorities are in the other
order: the important thing is that GNU Ada is free software; that it is
commercial is just a detail. However, the additional development of GNU
Ada that results from its being commercial is definitely beneficial. Please
help spread the awareness that free commercial software is possible. You
can do this by making an effort not to say “commercial” when you mean
“proprietary.”

 Endnotes

 [1] See “Linux and the GNU System” ([link]) for more information.

 [2] See “Free Software Is More Reliable!” at http://gnu.org/software/reliability.html.

 [3] See “Why Open Source Misses the Point of Free Software” ([link]).

 [4] See “Why Upgrade to GPLv3” ([link]) for more on this.

 [5] See “The X Window System Trap” ([link]).

 [6] See “The BSD License Problem,” at http://gnu.org/philosophy/bsd.html.

 [7] See “Overview of the GNU System,” at http://gnu.org/gnu/gnu-history.html, for
more historical background.

 [8] See “Linux and the GNU System” ([link]) for more information.

 [9] See “Overview of the GNU System,” at http://gnu.org/gnu/gnu-history.html, for
more historical background.

 [10] See http://directory.fsf.org.

 [11] See http://gnu.org/people/people.html.

 Chapter 14
Why Open Source Misses the Point of Free Software

 Copyright © 2007, 2008, 2010, 2012–2015 Richard Stallman
 This essay was originally published on http://gnu.org, in 2007. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

When
we call software “free,” we mean that it respects the users’ essential freedoms: the
freedom to run it, to study and change it, and to redistribute copies with or without
changes. [1] This is a matter of freedom, not price, so think of “free speech,” not “free
beer.”

 These freedoms are vitally important. They are essential, not just for the
individual users’ sake, but for society as a whole because they promote social
solidarity—that is, sharing and cooperation. They become even more important as
our culture and life activities are increasingly digitized. In a world of digital sounds,
images, and words, free software becomes increasingly essential for freedom in
general.

 Tens of millions of people around the world now use free software; the public
schools of some regions of India and Spain now teach all students to use the free
GNU/Linux operating system. [2] Most of these users, however, have never heard of
the ethical reasons for which we developed this system and built the free software
community, because nowadays this system and community are more often spoken of
as “open source,” attributing them to a different philosophy in which these freedoms
are hardly mentioned.

 The free software movement has campaigned for computer users’ freedom since
1983. In 1984 we launched the development of the free operating system GNU, so
that we could avoid the nonfree operating systems that deny freedom to their users.
During the 1980s, we developed most of the essential components of the system and
designed the GNU General Public License (GNU GPL) to release them
under—a license designed specifically to protect freedom for all users of a
program.

 Not all of the users and developers of free software agreed with the goals of the
free software movement. In 1998, a part of the free software community splintered
off and began campaigning in the name of “open source.” The term was originally
proposed to avoid a possible misunderstanding of the term “free software,” but it
soon became associated with philosophical views quite different from those of the
free software movement.

 Some of the supporters of open source considered the term a “marketing
campaign for free software,” which would appeal to business executives by
highlighting the software’s practical benefits, while not raising issues of right and
wrong that they might not like to hear. Other supporters flatly rejected the free
software movement’s ethical and social values. Whichever their views, when

campaigning for open source, they neither cited nor advocated those values. The
term “open source” quickly became associated with ideas and arguments based only
on practical values, such as making or having powerful, reliable software. Most of
the supporters of open source have come to it since then, and they make the same
association.

 The two terms describe almost the same category of software, but they stand for
views based on fundamentally different values. Open source is a development
methodology; free software is a social movement. For the free software movement,
free software is an ethical imperative, essential respect for the users’ freedom. By
contrast, the philosophy of open source considers issues in terms of how to make
software “better”—in a practical sense only. It says that nonfree software is an
inferior solution to the practical problem at hand. Most discussion of “open
source” pays no attention to right and wrong, only to popularity and success.
 [3]

 For the free software movement, however, nonfree software is a social problem,
and the solution is to stop using it and move to free software.

 “Free software.” “Open source.” If it’s the same software (or nearly so [4]), does it
matter which name you use? Yes, because different words convey different ideas.
While a free program by any other name would give you the same freedom today,
establishing freedom in a lasting way depends above all on teaching people to
value freedom. If you want to help do this, it is essential to speak of “free
software.”

 We in the free software movement don’t think of the open source camp as an
enemy; the enemy is proprietary (nonfree) software. But we want people to know we
stand for freedom, so we do not accept being mislabeled as open source
supporters.

 Practical Differences between Free Software and Open Source

 In practice, open source stands for criteria a little weaker than those of free
software. As far as we know, all existing free software would qualify as open source.
Nearly all open source software is free software, but there are exceptions. First,
some open source licenses are too restrictive, so they do not qualify as free licenses.
For example, “Open Watcom” is nonfree because its license does not allow making a
modified version and using it privately. Fortunately, few programs use such
licenses.

 Second, and more important in practice, many products containing computers
check signatures on their executable programs to block users from installing
different executables; only one privileged company can make executables
that can run in the device or can access its full capabilities. We call these
devices “tyrants,” and the practice is called “tivoization” after the product
(Tivo) where we first saw it. Even if the executable is made from free source
code, the users cannot run modified versions of it, so the executable is
nonfree.

 The criteria for open source do not recognize this issue; they are concerned

solely with the licensing of the source code. Thus, these unmodifiable executables,
when made from source code such as Linux that is open source and free, are open
source but not free. Many Android products contain nonfree tivoized executables of
Linux.

 Common Misunderstandings of “Free Software” and “Open Source”

 The term “free software” is prone to misinterpretation: an unintended meaning,
“software you can get for zero price,” fits the term just as well as the intended
meaning, “software which gives the user certain freedoms.” We address this problem
by publishing the definition of free software, and by saying “Think of ‘free speech,’
not ‘free beer.’” This is not a perfect solution; it cannot completely eliminate the
problem. An unambiguous and correct term would be better, if it didn’t present
other problems.

 Unfortunately, all the alternatives in English have problems of their
own. We’ve looked at many that people have suggested, but none is so
clearly “right” that switching to it would be a good idea. (For instance, in
some contexts the French and Spanish word “libre” works well, but people
in India do not recognize it at all.) Every proposed replacement for “free
software” has some kind of semantic problem—and this includes “open source
software.”

 The official definition of “open source software” (which is published by the Open
Source Initiative and is too long to include here [5]) was derived indirectly from our
criteria for free software. It is not the same; it is a little looser in some
respects. Nonetheless, their definition agrees with our definition in most
cases.

 However, the obvious meaning for the expression “open source software”—and
the one most people seem to think it means—is “You can look at the source code.”
That criterion is much weaker than the free software definition, much weaker also
than the official definition of open source. It includes many programs that are
neither free nor open source.

 Since that obvious meaning for “open source” is not the meaning that its
advocates intend, the result is that most people misunderstand the term. According
to writer Neal Stephenson, “Linux is ‘open source’ software meaning, simply that
anyone can get copies of its source code files.” [6] I don’t think he deliberately sought
to reject or dispute the official definition. I think he simply applied the conventions
of the English language to come up with a meaning for the term. The state of
Kansas published a similar definition: “Make use of open-source software (OSS).
OSS is software for which the source code is freely and publicly available, though
the specific licensing agreements vary as to what one is allowed to do with that
code.” [7]

 The New York Times ran an article that stretched the meaning of the term to

refer to user beta testing [8] —letting a few users try an early version and give
confidential feedback—which proprietary software developers have practiced for
decades.

 The term has even been stretched to include designs for equipment that are
published without a patent. [9] Patent-free equipment designs can be laudable
contributions to society, but the term “source code” does not pertain to
them.

 Open source supporters try to deal with this by pointing to their official
definition, but that corrective approach is less effective for them than it is for us.
The term “free software” has two natural meanings, one of which is the intended
meaning, so a person who has grasped the idea of “free speech, not free beer” will
not get it wrong again. But the term “open source” has only one natural meaning,
which is different from the meaning its supporters intend. So there is no
succinct way to explain and justify its official definition. That makes for worse
confusion.

 Another misunderstanding of “open source” is the idea that it means “not using
the GNU GPL.” This tends to accompany another misunderstanding that “free
software” means “GPL-covered software.” These are both mistaken, since the GNU
GPL qualifies as an open source license and most of the open source licenses qualify
as free software licenses. There are many free software licenses aside from the GNU
GPL. [10]

 The term “open source” has been further stretched by its application to other
activities, such as government, education, and science, where there is no such thing
as source code, and where criteria for software licensing are simply not
pertinent. The only thing these activities have in common is that they somehow
invite people to participate. They stretch the term so far that it only means
“participatory” or “transparent”, or less than that. At worst, it has become a
vacuous buzzword. [11]

 Different Values Can Lead to Similar Conclusions…but Not Always

 Radical groups in the 1960s had a reputation for factionalism: some
organizations split because of disagreements on details of strategy, and the two
daughter groups treated each other as enemies despite having similar basic goals
and values. The right wing made much of this and used it to criticize the entire
left.

 Some try to disparage the free software movement by comparing our
disagreement with open source to the disagreements of those radical groups. They
have it backwards. We disagree with the open source camp on the basic goals and
values, but their views and ours lead in many cases to the same practical
behavior—such as developing free software.

 As a result, people from the free software movement and the open source camp

often work together on practical projects such as software development. It is
remarkable that such different philosophical views can so often motivate
different people to participate in the same projects. Nonetheless, there are
situations where these fundamentally different views lead to very different
actions.

 The idea of open source is that allowing users to change and redistribute the
software will make it more powerful and reliable. But this is not guaranteed.
Developers of proprietary software are not necessarily incompetent. Sometimes they
produce a program that is powerful and reliable, even though it does not respect the
users’ freedom. Free software activists and open source enthusiasts will react very
differently to that.

 A pure open source enthusiast, one that is not at all influenced by the ideals of
free software, will say, “I am surprised you were able to make the program work so
well without using our development model, but you did. How can I get a copy?”
This attitude will reward schemes that take away our freedom, leading to its
loss.

 The free software activist will say, “Your program is very attractive, but I value
my freedom more. So I reject your program. I will get my work done some other
way, and support a project to develop a free replacement.” If we value our freedom,
we can act to maintain and defend it.

 Powerful, Reliable Software Can Be Bad

 The idea that we want software to be powerful and reliable comes from the
supposition that the software is designed to serve its users. If it is powerful and
reliable, that means it serves them better.

 But software can be said to serve its users only if it respects their freedom.
What if the software is designed to put chains on its users? Then powerfulness
means the chains are more constricting, and reliability that they are harder to
remove. Malicious features, such as spying on the users, restricting the users,
back doors, and imposed upgrades are common in proprietary software,
and some open source supporters want to implement them in open source
programs.

 Under pressure from the movie and record companies, software for individuals to
use is increasingly designed specifically to restrict them. This malicious feature is
known as Digital Restrictions Management (DRM) (see our campaign against it, at
DefectiveByDesign.org) and is the antithesis in spirit of the freedom
that free software aims to provide. And not just in spirit: since the goal of
DRM is to trample your freedom, DRM developers try to make it hard,
impossible, or even illegal for you to change the software that implements the
DRM.

 Yet some open source supporters have proposed “open source DRM” software.

Their idea is that, by publishing the source code of programs designed to restrict
your access to encrypted media and by allowing others to change it, they will
produce more powerful and reliable software for restricting users like you. The
software would then be delivered to you in devices that do not allow you to change
it.

 This software might be open source and use the open source development model,
but it won’t be free software since it won’t respect the freedom of the users that
actually run it. If the open source development model succeeds in making this
software more powerful and reliable for restricting you, that will make it even
worse.

 Fear of Freedom

 The main initial motivation of those who split off the open source camp from the
free software movement was that the ethical ideas of “free software” made
some people uneasy. That’s true: raising ethical issues such as freedom,
talking about responsibilities as well as convenience, is asking people to think
about things they might prefer to ignore, such as whether their conduct is
ethical. This can trigger discomfort, and some people may simply close their
minds to it. It does not follow that we ought to stop talking about these
issues.

 That is, however, what the leaders of open source decided to do. They
figured that by keeping quiet about ethics and freedom, and talking only
about the immediate practical benefits of certain free software, they might
be able to “sell” the software more effectively to certain users, especially
business.

 This approach has proved effective, in its own terms. The rhetoric of open source
has convinced many businesses and individuals to use, and even develop, free
software, which has extended our community—but only at the superficial, practical
level. The philosophy of open source, with its purely practical values, impedes
understanding of the deeper ideas of free software; it brings many people into our
community, but does not teach them to defend it. That is good, as far as it
goes, but it is not enough to make freedom secure. Attracting users to free
software takes them just part of the way to becoming defenders of their own
freedom.

 Sooner or later these users will be invited to switch back to proprietary software
for some practical advantage. Countless companies seek to offer such temptation,
some even offering copies gratis. Why would users decline? Only if they have
learned to value the freedom free software gives them, to value freedom in and of
itself rather than the technical and practical convenience of specific free software. To
spread this idea, we have to talk about freedom. A certain amount of the “keep
quiet” approach to business can be useful for the community, but it is dangerous

if it becomes so common that the love of freedom comes to seem like an
eccentricity.

 That dangerous situation is exactly what we have. Most people involved with
free software, especially its distributors, say little about freedom—usually
because they seek to be “more acceptable to business.” Nearly all GNU/Linux
operating system distributions add proprietary packages to the basic free
system, and they invite users to consider this an advantage rather than a
flaw.

 Proprietary add-on software and partially nonfree GNU/Linux distributions find
fertile ground because most of our community does not insist on freedom with its
software. This is no coincidence. Most GNU/Linux users were introduced to the
system through “open source” discussion, which doesn’t say that freedom is a goal.
The practices that don’t uphold freedom and the words that don’t talk about
freedom go hand in hand, each promoting the other. To overcome this tendency, we
need more, not less, talk about freedom.

 “FLOSS” and “FOSS”

 The terms “FLOSS” and “FOSS” [12] are used to be neutral between free software
and open source. If neutrality is your goal, “FLOSS” is the better of the two, since it
really is neutral. But if you want to stand up for freedom, using a neutral term isn’t
the way. Standing up for freedom entails showing people your support for
freedom.

 Rivals for Mindshare

 “Free” and “open” are rivals for mindshare. “Free software” and “open source” are
different ideas but, in most people’s way of looking at software, they compete for
the same conceptual slot. When people become habituated to saying and thinking
“open source,” that is an obstacle to their grasping the free software movement’s
philosophy and thinking about it. If they have already come to associate us and our
software with the word “open,” we may need to shock them intellectually before
they recognize that we stand for something else. Any activity that promotes the
word “open” tends to extend the curtain that hides the ideas of the free software
movement.

 Thus, free software activists are well advised to decline to work on an activity
that calls itself “open.” Even if the activity is good in and of itself, each contribution
you make does a little harm on the side. There are plenty of other good activities
which call themselves “free” or “libre.” Each contribution to those projects does a

little extra good on the side. With so many useful projects to choose from, why not
choose one which does extra good?

 Conclusion

 As the advocates of open source draw new users into our community, we free
software activists must shoulder the task of bringing the issue of freedom to their
attention. We have to say, “It’s free software and it gives you freedom!”—more and
louder than ever. Every time you say “free software” rather than “open source,” you
help our cause.

 Note

 Karim R. Lakhani and Robert G. Wolf’s paper on the motivation of free software
developers (“Why Hackers Do What They Do: Understanding Motivation and Effort
in Free/Open Source Software Projects,” in Perspectives on Free and Open Source
Software, edited by J. Feller and others (Cambridge: MIT Press, 2005),
http://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-innovation-emerging-trends-spring-2005/readings/lakhaniwolf.pdf)
says that a considerable fraction are motivated by the view that software
should be free. This is despite the fact that they surveyed the developers on
SourceForge, a site that does not support the view that this is an ethical
issue.

 Endnotes

 [1] See [link] for the full definition of free software.

 [2] See “Linux and the GNU System” ([link]) for more on the operating system.

 [3] For a typical example, see, for instance, Jay Lyman’s article “Open Source Is Woven Into
the Latest, Hottest Trends” (12 September 2013, http://www.linuxinsider.com/story/Open-Source-Is-Woven-Into-the-Latest-Hottest-Trends-78937.html).

 [4] See “How Free Software and Open Source Relate as Categories of Programs,” at
http://gnu.org/philosophy/free-open-overlap.html.

 [5] See http://opensource.org/docs/osd for the full definition.

 [6] Neal Stephenson, In the Beginning...Was the Command Line (New York: HarperCollins
Publishers, 1999), p. 94.

 [7] Kansas Statewide Technology Architecture, “Information Architecture,” version 8.0,
20.3.8, accessed 11 October 2001, https://web.archive.org/web/20001011193422/http://da.state.ks.us/ITEC/TechArchPt6ver80.pdf.

 [8] Mary Jane Irwin, “The Brave New World of Open-Source Game Design,” New York
Times, online ed., 7 February 2009, http://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html.

 [9] Karl Mathiesen and Tess Riley, “Texas Teenager Creates $20 Water Purifier to Tackle
Toxic E-Waste Pollution,” 27 August 2015, http://theguardian.com/sustainable-business/2015/aug/27/texas-teenager-water-purifier-toxic-e-waste-pollution.

 [10] See “Various Licenses and Comments about Them,” at
http://gnu.org/licenses/license-list.html.

 [11] Evgeny Morozov, “Open and Closed,” 16 March 2013,
http://www.nytimes.com/2013/03/17/opinion/sunday/morozov-open-and-closed.html.

 [12] See both [link] and the
article “FLOSS and FOSS,” at http://www.gnu.org/philosophy/floss-and-foss.html, for
more on this issue.

 Chapter 15
Did You Say “Intellectual Property”? It’s a Seductive Mirage

 Copyright © 2004, 2006, 2007, 2009, 2010, 2013, 2015 Richard Stallman
 This article was written in 2004 and published in Policy Futures in Education, vol. 4, n. 4,
pp. 334–336, 2006. This version is part of Free Software, Free Society: Selected Essays of Richard
M. Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

It has
become fashionable to toss copyright, patents, and trademarks—three separate and
different entities involving three separate and different sets of laws—plus a dozen
other laws into one pot and call it “intellectual property.” The distorting and
confusing term did not become common by accident. Companies that gain from the
confusion promoted it. The clearest way out of the confusion is to reject the term
entirely.

 According to Professor Mark Lemley, now of the Stanford Law School, the
widespread use of the term “intellectual property” is a fashion that followed the
1967 founding of the World “Intellectual Property” Organization (WIPO), and only
became really common in recent years. (WIPO is formally a UN organization, but
in fact represents the interests of the holders of copyrights, patents, and
trademarks.) Wide use dates from around 1990.

 The term carries a bias that is not hard to see: it suggests thinking about
copyright, patents and trademarks by analogy with property rights for
physical objects. (This analogy is at odds with the legal philosophies of
copyright law, of patent law, and of trademark law, but only specialists know
that.) These laws are in fact not much like physical property law, but use
of this term leads legislators to change them to be more so. Since that is
the change desired by the companies that exercise copyright, patent and
trademark powers, the bias introduced by the term “intellectual property” suits
them.

 The bias is reason enough to reject the term, and people have often asked me to
propose some other name for the overall category—or have proposed their own
alternatives (often humorous). Suggestions include IMPs, for Imposed Monopoly
Privileges, and GOLEMs, for Government-Originated Legally Enforced Monopolies.
Some speak of “exclusive rights regimes,” but referring to restrictions as “rights” is
doublethink too.

 Some of these alternative names would be an improvement, but it is a mistake to
replace “intellectual property” with any other term. A different name will not
address the term’s deeper problem: overgeneralization. There is no such unified
thing as “intellectual property”—it is a mirage. The only reason people think it
makes sense as a coherent category is that widespread use of the term has misled
them about the laws in question.

 The term “intellectual property” is at best a catch-all to lump together
disparate laws. Nonlawyers who hear one term applied to these various

laws tend to assume they are based on a common principle and function
similarly.

 Nothing could be further from the case. These laws originated separately,
evolved differently, cover different activities, have different rules, and raise different
public policy issues.

 For instance, copyright law was designed to promote authorship and art, and
covers the details of expression of a work. Patent law was intended to promote the
publication of useful ideas, at the price of giving the one who publishes an idea a
temporary monopoly over it—a price that may be worth paying in some fields and
not in others.

 Trademark law, by contrast, was not intended to promote any particular way of
acting, but simply to enable buyers to know what they are buying. Legislators
under the influence of the term “intellectual property,” however, have turned it into
a scheme that provides incentives for advertising. And these are just three out of
many laws that the term refers to.

 Since these laws developed independently, they are different in every detail, as
well as in their basic purposes and methods. Thus, if you learn some fact about
copyright law, you’d be wise to assume that patent law is different. You’ll rarely go
wrong!

 In practice, nearly all general statements you encounter that are formulated
using “intellectual property” will be false. For instance, you’ll see claims that “its”
purpose is to “promote innovation,” but that only fits patent law and perhaps plant
variety monopolies. Copyright law is not concerned with innovation; a pop song or
novel is copyrighted even if there is nothing innovative about it. Trademark law is
not concerned with innovation; if I start a tea store and call it “rms tea,” that would
be a solid trademark even if I sell the same teas in the same way as everyone else.
Trade secret law is not concerned with innovation, except tangentially;
my list of tea customers would be a trade secret with nothing to do with
innovation.

 You will also see assertions that “intellectual property” is concerned with
“creativity,” but really that only fits copyright law. More than creativity is needed
to make a patentable invention. Trademark law and trade secret law have nothing
to do with creativity; the name “rms tea” isn’t creative at all, and neither is my
secret list of tea customers.

 People often say “intellectual property” when they really mean some larger or
smaller set of laws. For instance, rich countries often impose unjust laws on poor
countries to squeeze money out of them. Some of these laws are among those called
“intellectual property” laws, and others are not; nonetheless, critics of the practice
often grab for that label because it has become familiar to them. By using it,
they misrepresent the nature of the issue. It would be better to use an
accurate term, such as “legislative colonization,” that gets to the heart of the
matter.

 Laymen are not alone in being confused by this term. Even law professors who
teach these laws are lured and distracted by the seductiveness of the term
“intellectual property,” and make general statements that conflict with facts they
know. For example, one professor wrote in 2006:

 Unlike their descendants who now work the floor at WIPO, the framers of
 the US constitution had a principled, procompetitive attitude to intellectual
 property. They knew rights might be necessary, but…they tied Congress’s hands,
 restricting its power in multiple ways.

 That statement refers to Article I, Section 8, Clause 8, of the US Constitution,
which authorizes copyright law and patent law. That clause, though, has nothing to
do with trademark law, trade secret law, or various others. The term “intellectual
property” led that professor to make a false generalization.

 The term “intellectual property” also leads to simplistic thinking. It leads people
to focus on the meager commonality in form that these disparate laws have—that
they create artificial privileges for certain parties—and to disregard the details
which form their substance: the specific restrictions each law places on the public,
and the consequences that result. This simplistic focus on the form encourages an
“economistic” approach to all these issues.

 Economics operates here, as it often does, as a vehicle for unexamined
assumptions. These include assumptions about values, such as that amount of
production matters while freedom and way of life do not, and factual assumptions
which are mostly false, such as that copyrights on music supports musicians, or that
patents on drugs support life-saving research.

 Another problem is that, at the broad scale implicit in the term “intellectual
property,” the specific issues raised by the various laws become nearly invisible.
These issues arise from the specifics of each law—precisely what the term
“intellectual property” encourages people to ignore. For instance, one issue relating
to copyright law is whether music sharing should be allowed; patent law has nothing
to do with this. Patent law raises issues such as whether poor countries should be
allowed to produce life-saving drugs and sell them cheaply to save lives; copyright
law has nothing to do with such matters.

 Neither of these issues is solely economic in nature, and their noneconomic
aspects are very different; using the shallow economic overgeneralization as the
basis for considering them means ignoring the differences. Putting the two
laws in the “intellectual property” pot obstructs clear thinking about each
one.

 Thus, any opinions about “the issue of intellectual property” and any
generalizations about this supposed category are almost surely foolish. If you think
all those laws are one issue, you will tend to choose your opinions from a selection of
sweeping overgeneralizations, none of which is any good.

 If you want to think clearly about the issues raised by patents, or copyrights, or
trademarks, or various other different laws, the first step is to forget the idea of
lumping them together, and treat them as separate topics. The second step is to
reject the narrow perspectives and simplistic picture the term “intellectual property”
suggests. Consider each of these issues separately, in its fullness, and you have a
chance of considering them well.

 Notes

 	See also “The Curious
 History of Komongistan (Busting the Term ‘Intellectual Property’),” at
 http://gnu.org/philosophy/komongistan.html.

 	Countries in Africa are a lot more similar than these laws, and “Africa”
 is a coherent geographical concept; nonetheless, talking about “Africa”
 instead of a specific country causes lots of confusion. [1]

 	Rickard Falkvinge supports rejection of this term. [2]

 Endnotes

 [1] Nicolas Kayser-Bril, “Africa Is Not a Country,” 24 January 2014,
http://theguardian.com/world/2014/jan/24/africa-clinton.

 [2] “Language Matters: Framing the Copyright Monopoly So We Can Keep Our Liberties,”
14 July 2013, http://torrentfreak.com/language-matters-framing-the-copyright-monopoly-so-we-can-keep-our-liberties-130714.

 Chapter 16
Why Call It the Swindle?

 Copyright © 2013 Richard Stallman
 This version of this essay is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

I go
out of my way to call nasty things by names that criticize them. I call Apple’s
user-subjugating computers the “iThings,” and Amazon’s abusive e-reader the
“Swindle.” Sometimes I refer to Microsoft’s operating system as “Losedows”; I
referred to Microsoft’s first operating system as “MS-Dog.” [1] Of course, I do this to
vent my feelings and have fun. But this fun is more than personal; it serves an
important purpose. Mocking our enemies recruits the power of humor into our
cause.

 Twisting a name is disrespectful. If we respected the makers of these products,
we would use the names that they chose…and that’s exactly the point. These
noxious products deserve our contempt, not our respect. Every proprietary program
subjects its users to some entity’s power, but nowadays most widely used ones go
beyond that to spy on users, restrict them and even push them around: the trend is
for products to get nastier. These products deserve to be wiped out. Those with
DRM ought to be illegal.

 When we mention them, we should show that we condemn them, and what
easier way than by twisting their names? If we don’t do that, it is all too easy to
mention them and fail to present the condemnation. When the product comes up in
the middle of some other topic, for instance, explaining at greater length that the
product is bad might seem like a long digression.

 To mention these products by name and fail to condemn them has the effect of
legitimizing them, which is the opposite of what they call for.

 Companies choose names for products as part of a marketing plan. They choose
names they think people will be likely to repeat, then invest millions of dollars in
marketing campaigns to make people repeat and think about those names. Usually
these marketing campaigns are intended to convince people to admire the
products based on their superficial attractions and overlook the harm they
do.

 Every time we call these products by the names the companies use,
we contribute to their marketing campaigns. Repeating those names is
active support for the products; twisting them denies the products our
support.

 Other terminology besides product names can raise a similar issue. For instance,
DRM refers to building technology products to restrict their users for the benefit of
someone else. This inexcusable practice deserves our burning hatred until we wipe it
out. Naturally, those responsible gave it a name that frames the issue from their
point of view: “Digital Rights Management.” This name is the basis of a public

relations campaign that aims to win support from entities ranging from
governments to the W3C. [2]

 To use their term is to take their side. If that’s not the side you’re on, why give
it your implicit support?

 We take the users’ side, and from the users’ point of view, what these
malfeatures manage are not rights but restrictions. So we call them “Digital
Restrictions Management.”

 Neither of those terms is neutral: choose a term, and you choose a side. Please
choose the users’ side and please let it show.

 Once, a man in the audience at my speech claimed that the name “Digital Rights
Management” was the official name of “DRM,” the only possible correct name,
because it was the first name. He argued that as a consequence it was wrong for us
to say “Digital Restrictions Management.”

 Those who make a product or carry out a business practice typically choose a
name for it before we even know it exists. If their temporal precedence
obligated us to use their name, they would have an additional automatic
advantage, on top of their money, their media influence and their technological
position. We would have to fight them with our mouths tied behind our
backs.

 Some people feel a distaste for twisting names and say it sounds “juvenile” or
“unprofessional.” What they mean is, it doesn’t sound humorless and stodgy—and
that’s a good thing, because we would not have laughter on our side if we tried to
sound “professional.” Fighting oppression is far more serious than professional work,
so we’ve got to add comic relief. It calls for real maturity, which includes some
childishness, not “acting like an adult.”

 If you don’t like our choice of name parodies, you can invent your own. The
more, the merrier. Of course, there are other ways to express condemnation. If you
want to sound “professional,” you can show it in other ways. They can get the point
across, but they require more time and effort, especially if you don’t make use
of mockery. Take care this does not this lead you to skimp; don’t let the
pressure against such “digression” push you into insufficiently criticizing the
nasty things you mention, because that would have the effect of legitimizing
them.

 Endnotes

 [1] Take
action against iThings, at u.fsf.org/ithings, against the Swindle, at u.fsf.org/swindle
and u.fsf.org/ebookslist, and against Windows, at upgradefromwindows.org.

 [2] See https://u.fsf.org/drm for more on DRM.

 Chapter 17
Words to Avoid (or Use with Care) Because They Are Loaded or Confusing

 Copyright © 1996–1999, 2001–2004, 2007–2015 Free Software Foundation, Inc.
 This list was first published on http://gnu.org, in 1996. This version is part of Free Software,
Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

There
are a number of words and phrases that we recommend avoiding, or avoiding in
certain contexts and usages. Some are ambiguous or misleading; others presuppose a
viewpoint that we disagree with, and we hope you disagree with it too. (See also
“Categories of Free and Nonfree Software” ([link]) and “Why Call It the Swindle?”
([link]).)

 “Access”

 It is a common misunderstanding to think free software means that the public
has “access” to a program. That is not what free software means.

 The criterion for free software [1] is not about who has “access” to the program;
the four essential freedoms concern what a user that has a copy of the program can
do with it. For instance, freedom 2 says that that user is free to make
another copy and give or sell it to you. But no user is obligated to do that for
you; you do not have a right to demand a copy of that program from any
user.

 In particular, if you write a program yourself and never offer a copy to anyone
else, that program is free software (in a trivial way) because you (the sole user that
has it) have the four essential freedoms.

 In practice, when many users have copies of a program, someone is sure to
post it on the internet, giving everyone access to it. We think people ought
to do that, if the program is useful. But this isn’t a requirement of free
software.

 There is one specific point in which a question of having access is directly
pertinent to free software: the GNU GPL permits giving a particular user access to
download a program’s source code as a substitute for physically giving that user a
copy of the source. This applies to the special case in which the user already has a
copy of the program in non-source form.

 “Alternative”

 We don’t describe free software as an “alternative” to proprietary, because that
word presumes all the “alternatives” are legitimate and each additional one makes
users better off. In effect, it assumes that free software ought to coexist with
software that does not respect users’ freedom.

 We believe that distribution as free software is the only ethical way to make
software available for others to use. The other methods, nonfree software
and

 Service as a Software Substitute subjugate their users. [2] We do not think it is
good to offer users those “alternatives” to free software.

 “BSD-Style”

 The expression “BSD-style license” leads to confusion because it lumps
together licenses that have important differences. [3] For instance, the original
BSD license with the advertising clause is incompatible with the GNU
General Public License, but the revised BSD license is compatible with the
GPL.

 To avoid confusion, it is best to name the specific license in question [4] and avoid
the vague term “BSD-style.”

 “Closed”

 Describing nonfree software as “closed” clearly refers to the term “open source.”
In the free software movement, we do not want to be confused with the open source
camp, so we are careful to avoid saying things that would encourage people to lump
us in with them. [5] For instance, we avoid describing nonfree software as “closed.” We
call it “nonfree” or “proprietary.” [6]

 “Cloud Computing”

 The term “cloud computing” (or just “cloud,” in the context of computing) is a
marketing buzzword with no coherent meaning. It is used for a range of different
activities whose only common characteristic is that they use the internet for
something beyond transmitting files. Thus, the term spreads confusion. If you base

your thinking on it, your thinking will be confused.

 When thinking about or responding to a statement someone else has made using
this term, the first step is to clarify the topic. What scenario is the statement
about? What is a good, clear term for that scenario? Once the topic is clearly
formulated, coherent discussion is possible.

 One of the many meanings of “cloud computing” is storing your data in
online services. In most scenarios, that is foolish because it exposes you to
surveillance. [7]

 Another meaning (which overlaps that but is not the same thing) is Service as a
Software Substitute, which denies you control over your computing. You should
never use SaaSS. [8]

 Another meaning is renting a remote physical server, or virtual server. These
practices are OK under certain circumstances.

 Another meaning is accessing your own server from your own mobile device.
That raises no particular ethical issues.

 The NIST definition of “cloud computing” [9] mentions three scenarios that raise
different ethical issues: Software as a Service, Platform as a Service, and
Infrastructure as a Service. However, that definition does not match the common
use of “cloud computing,” since it does not include storing data in online services.
Software as a Service as defined by NIST overlaps considerably with Service as a
Software Substitute, which mistreats the user, but the two concepts are not
equivalent.

 These different computing practices don’t even belong in the same discussion.
The best way to avoid the confusion the term “cloud computing” spreads is not to
use the term “cloud” in connection with computing. Talk about the scenario you
mean, and call it by a specific term.

 Curiously, Larry Ellison, a proprietary software developer, also noted the vacuity
of the term “cloud computing.” [10] He decided to use the term anyway because, as a
proprietary software developer, he isn’t motivated by the same ideals as we
are.

 “Commercial”

 Please don’t use “commercial” as a synonym for “nonfree.” That confuses two
entirely different issues.

 A program is commercial if it is developed as a business activity. A commercial
program can be free or nonfree, depending on its manner of distribution. Likewise, a
program developed by a school or an individual can be free or nonfree,
depending on its manner of distribution. The two questions—what sort
of entity developed the program and what freedom its users have—are
independent.

 In the first decade of the free software movement, free software packages were

almost always noncommercial; the components of the GNU/Linux operating system
were developed by individuals or by nonprofit organizations such as the FSF
and universities. Later, in the 1990s, free commercial software started to
appear.

 Free commercial software is a contribution to our community, so we should
encourage it. But people who think that “commercial” means “nonfree” will tend to
think that the “free commercial” combination is self-contradictory, and dismiss
the possibility. Let’s be careful not to use the word “commercial” in that
way.

 “Compensation”

 To speak of “compensation for authors” in connection with copyright carries
the assumptions that (1) copyright exists for the sake of authors and (2)
whenever we read something, we take on a debt to the author which we
must then repay. The first assumption is simply false, [11] and the second is
outrageous.

 “Compensating the rights-holders” adds a further swindle: you’re supposed to
imagine that means paying the authors, and occasionally it does, but most of the
time it means a subsidy for the same publishing companies that are pushing unjust
laws on us.

 “Consume”

 “Consume” refers to what we do with food: we ingest it, after which the food as
such no longer exists. By analogy, we employ the same word for other products
whose use uses them up. Applying it to durable goods, such as clothing or
appliances, is a stretch. Applying it to published works (programs, recordings
on a disk or in a file, books on paper or in a file), whose nature is to last
indefinitely and which can be run, played or read any number of times, is simply
an error. Playing a recording, or running a program, does not consume
it.

 The term “consume” is associated with the economics of uncopyable material
products, and leads people to transfer its conclusions unconsciously to copyable
digital works—an error that proprietary software developers (and other
publishers) dearly wish to encourage. Their twisted viewpoint comes through
clearly in a Business Insider article, [12] which also refers to publications as
“content.”

 The narrow thinking associated with the idea that we “consume content” paves
the way for laws such as the DMCA that forbid users to break the Digital
Restrictions Management (DRM) facilities in digital devices. If users think what
they do with these devices is “consume,” they may see such restrictions as
natural.

 It also encourages the acceptation of “streaming” services, which use DRM to
limit use of digital recordings to a form that fits the word “consume.”

 Why is this perverse usage spreading? Some may feel that the term sounds
sophisticated; if that attracts you, rejecting it with cogent reasons can appear even
more sophisticated. Others may be acting from business interests (their own, or
their employers’). Their use of the term in prestigious forums gives the impression
that it’s the “correct” term.

 To speak of “consuming” music, fiction, or any other artistic works is to treat
them as products rather than as art. If you don’t want to spread that attitude, you
would do well to reject using the term “consume” for them. We recommend saying
that someone “experiences” an artistic work or a work stating a point of view, and
that someone “uses” a practical work.

 “Consumer”

 The term “consumer,” when used to refer to the users of computing, is loaded
with assumptions we should reject. Some come from the idea that using the
program “consumes” the program (see the previous entry), which leads people to
impose on copyable digital works the economic conclusions that were drawn about
uncopyable material products.

 In addition, describing the users of software as “consumers” refers to a framing in
which people are limited to selecting between whatever “products” are available in
the “market.” There is no room in this framing for the idea that users can directly
exercise control over what a program does. [13]

 To describe people who are not limited to passive use of works, we suggest terms
such as “individuals” and “citizens,” rather than “consumers.”

 This problem with the word “consumer” has been noted before. [14]

 “Content”

 If you want to describe a feeling of comfort and satisfaction, by all means say
you are “content,” but using the word as a noun to describe publications and works
of authorship adopts an attitude you might rather avoid: it treats them as a
commodity whose purpose is to fill a box and make money. In effect, it disparages

the works themselves. If you don’t agree with that attitude, you can call them
“works” or “publications.”

 Those who use the term “content” are often the publishers that push for
increased copyright power in the name of the authors (“creators,” as they say) of the
works. The term “content” reveals their real attitude towards these works and their
authors. (See Courtney Love’s open letter to Steve Case [15] and search for “content
provider” in that page. Alas, Ms. Love is unaware that the term “intellectual
property” is also biased and confusing. [16])

 However, as long as other people use the term “content provider,” political
dissidents can well call themselves “malcontent providers.”

 The term “content management” takes the prize for vacuity. “Content” means
“some sort of information,” and “management” in this context means “doing
something with it.” So a “content management system” is a system for
doing something to some sort of information. Nearly all programs fit that
description.

 In most cases, that term really refers to a system for updating pages on
a web site. For that, we recommend the term “web site revision system”
(WRS).

 “Creative Commons Licensed”

 The most important licensing characteristic of a work is whether it is free.
Creative Commons publishes seven licenses; three are free (CC BY, CC BY-SA
and CC0) and the rest are nonfree. Thus, to describe a work as “Creative
Commons licensed” fails to say whether it is free, and suggests that the
question is not important. The statement may be accurate, but the omission is
harmful.

 To encourage people to pay attention to the most important distinction, always
specify which Creative Commons license is used, as in “licensed under CC BY-SA.”
If you don’t know which license a certain work uses, find out and then make your
statement.

 “Creator”

 The term “creator” as applied to authors implicitly compares them to a deity
(“the creator”). The term is used by publishers to elevate authors’ moral standing
above that of ordinary people in order to justify giving them increased copyright
power, which the publishers can then exercise in their name. We recommend saying
“author” instead. However, in many cases “copyright holder” is what you really

mean. These two terms are not equivalent: often the copyright holder is not the
author.

 “Digital Goods”

 The term “digital goods,” as applied to copies of works of authorship, identifies
them with physical goods—which cannot be copied, and which therefore
have to be manufactured in quantity and sold. This metaphor encourages
people to judge issues about software or other digital works based on their
views and intuitions about physical goods. It also frames issues in terms of
economics, whose shallow and limited values don’t include freedom and
community.

 “Digital Locks”

 “Digital locks” is used to refer to Digital Restrictions Management by some
who criticize it. The problem with this term is that it fails to do justice to
the badness of DRM. The people who adopted that term did not think it
through.

 Locks are not necessarily oppressive or bad. You probably own several locks, and
their keys or codes as well; you may find them useful or troublesome, but they don’t
oppress you, because you can open and close them. Likewise, we find encryption [17]
invaluable for protecting our digital files. That too is a kind of digital lock that you
have control over.

 DRM is like a lock placed on you by someone else, who refuses to give you the
key—in other words, like handcuffs. Therefore, the proper metaphor for DRM is
“digital handcuffs,” not “digital locks.”

 A number of opposition campaigns have chosen the unwise term “digital locks”;
to get things back on the right track, we must firmly insist on correcting this
mistake. The FSF can support a campaign that opposes “digital locks” if we agree
on the substance; however, when we state our support, we conspicuously replace the
term with “digital handcuffs” and say why.

 “Digital Rights Management”

 “Digital Rights Management” (abbreviated “DRM”) refers to technical
mechanisms designed to impose restrictions on computer users. The use of the word
“rights” in this term is propaganda, designed to lead you unawares into seeing the
issue from the viewpoint of the few that impose the restrictions, and ignoring that
of the general public on whom these restrictions are imposed.

 Good alternatives include “Digital Restrictions Management,” and “digital
handcuffs.”

 Please sign up to support our campaign to abolish DRM, at
DefectiveByDesign.org.

 “Ecosystem”

 It is inadvisable to describe the free software community, or any human
community, as an “ecosystem,” because that word implies the absence of ethical
judgment.

 The term “ecosystem” implicitly suggests an attitude of nonjudgmental
observation: don’t ask how what should happen, just study and understand what
does happen. In an ecosystem, some organisms consume other organisms. In
ecology, we do not ask whether it is right for an owl to eat a mouse or for a
mouse to eat a seed, we only observe that they do so. Species’ populations
grow or shrink according to the conditions; this is neither right nor wrong,
merely an ecological phenomenon, even if it goes so far as the extinction of a
species.

 By contrast, beings that adopt an ethical stance towards their surroundings can
decide to preserve things that, without their intervention, might vanish—such as
civil society, democracy, human rights, peace, public health, a stable climate, clean
air and water, endangered species, traditional arts…and computer users’
freedom.

 “FLOSS”

 The term “FLOSS,” meaning “Free/Libre and Open Source Software,” was
coined as a way to be neutral between free software and open source. [18] If neutrality
is your goal, “FLOSS” is the best way to be neutral. But if you want to show you
stand for freedom, don’t use a neutral term.

 “For Free”

 If you want to say that a program is free software, please don’t say that it is
available “for free.” That term specifically means “for zero price.” Free software is a
matter of freedom, not price.

 Free software copies are often available for free—for example, by downloading
via FTP. But free software copies are also available for a price on CD-ROMs;
meanwhile, proprietary software copies are occasionally available for free in
promotions, and some proprietary packages are normally available at no charge to
certain users.

 To avoid confusion, you can say that the program is available “as free
software.”

 “FOSS”

 The term “FOSS,” meaning “Free and Open Source Software,” was coined as a
way to be neutral between free software and open source, but it doesn’t really do
that. [19] If neutrality is your goal, “FLOSS” is better. But if you want to show you
stand for freedom, don’t use a neutral term.

 “Freely Available”

 Don’t use “freely available software” as a synonym for “free software.” The terms
are not equivalent. Software is “freely available” if anyone can easily get a copy.
“Free software” is defined in terms of the freedom of users that have a copy of it.
These are answers to different questions.

 “Freeware”

 Please don’t use the term “freeware” as a synonym for “free software.” The
term “freeware” was used often in the 1980s for programs released only as
executables, with source code not available. Today it has no particular agreed-on
definition.

 When using languages other than English, please avoid borrowing English terms
such as “free software” or “freeware.” It is better to translate the term “free software”
into your language. (Please see [link] for a list of recommended unambiguous
translations for the term “free software” into various languages.)

 By using a word in your own language, you show that you are really referring to
freedom and not just parroting some mysterious foreign marketing concept. The
reference to freedom may at first seem strange or disturbing to your compatriots,
but once they see that it means exactly what it says, they will really understand
what the issue is.

 “Give Away Software”

 It’s misleading to use the term “give away” to mean “distribute a program as free
software.” This locution has the same problem as “for free”: it implies the issue is
price, not freedom. One way to avoid the confusion is to say “release as free
software.”

 “Google”

 Please avoid using the term “google” as a verb, meaning to search for something
on the internet. “Google” is just the name of one particular search engine among
others. We suggest to use the term “web search” instead. Try to use a search engine
that respects your privacy; DuckDuckGo claims not to track its users, [20] although
we cannot confirm.

 “Hacker”

 A hacker is someone who enjoys playful cleverness [21] —not necessarily with
computers. The programmers in the old MIT free software community of the 60s
and 70s referred to themselves as hackers. Around 1980, journalists who
discovered the hacker community mistakenly took the term to mean “security
breaker.”

 Please don’t spread this mistake. People who break security are “crackers.”

 “Intellectual Property”

 Publishers and lawyers like to describe copyright as “intellectual property”—a
term also applied to patents, trademarks, and other more obscure areas of law.
These laws have so little in common, and differ so much, that it is ill-advised to
generalize about them. It is best to talk specifically about “copyright,” or about
“patents,” or about “trademarks.”

 The term “intellectual property” carries a hidden assumption—that the way to
think about all these disparate issues is based on an analogy with physical objects,
and our conception of them as physical property.

 When it comes to copying, this analogy disregards the crucial difference between
material objects and information: information can be copied and shared almost
effortlessly, while material objects can’t be.

 To avoid spreading unnecessary bias and confusion, it is best to adopt a firm
policy not to speak or even think in terms of “intellectual property.”

 The hypocrisy of calling these powers “rights” is starting to make the World
“Intellectual Property” Organization embarrassed. [22]

 “LAMP System”

 “LAMP” stands for “Linux, Apache, MySQL and PHP”—a common combination
of software to use on a web server, except that “Linux” in this context really refers
to the GNU/Linux system. So instead of “LAMP” it should be “GLAMP”: “GNU,
Linux, Apache, MySQL and PHP.”

 “Linux System”

 Linux is the name of the kernel that Linus Torvalds developed starting
in 1991. The operating system in which Linux is used is basically GNU
with Linux added. To call the whole system “Linux” is both unfair and
confusing. Please call the complete system GNU/Linux, both to give the
GNU Project credit and to distinguish the whole system from the kernel
alone. [23]

 “Market”

 It is misleading to describe the users of free software, or the software users in
general, as a “market.”

 This is not to say there is no room for markets in the free software community. If
you have a free software support business, then you have clients, and you trade with
them in a market. As long as you respect their freedom, we wish you success in your
market.

 But the free software movement is a social movement, not a business, and
the success it aims for is not a market success. We are trying to serve the
public by giving it freedom—not competing to draw business away from a
rival. To equate this campaign for freedom to a business’s efforts for mere
success is to deny the importance of freedom and legitimize proprietary
software.

 “Monetize”

 The proper definition of “monetize” is “to use something as currency.” For
instance, human societies have monetized gold, silver, copper, printed paper, special
kinds of seashells, and large rocks. However, we now see a tendency to
use the word in another way, meaning “to use something as a basis for
profit.”

 That usage casts the profit as primary, and the thing used to get the profit as
secondary. That attitude applied to a software project is objectionable because it
would lead the developers to make the program proprietary, if they conclude that
making it free/libre isn’t sufficiently profitable.

 A productive and ethical business can make money, but if it subordinates all else
to profit, it is not likely to remain ethical.

 “MP3Player”

 In the late 1990s it became feasible to make portable, solid-state digital audio
players. Most support the patented MP3 codec, but not all. Some support the
patent-free audio codecs Ogg Vorbis and FLAC, and may not even support
MP3-encoded files at all, precisely to avoid these patents. To call such players “MP3
players” is not only confusing, it also privileges the MP3 that we ought to reject. We
suggest the terms “digital audio player,” or simply “audio player” if context

permits.

 “Open”

 Please avoid using the term “open” or “open source” as a substitute for “free
software.” Those terms refer to a different position [24] based on different
values. Free software is a political movement; open source is a development
model.

 When referring to the open source position, using its name is appropriate; but
please do not use it to label us or our work—that leads people to think we share
those views.

 “PC”

 It’s OK to use the abbreviation “PC” to refer to a certain kind of computer
hardware, but please don’t use it with the implication that the computer is running
Microsoft Windows. If you install GNU/Linux on the same computer, it is still a
PC.

 The term “WC” has been suggested for a computer running Windows.

 “Photoshop”

 Please avoid using the term “photoshop” as a verb, meaning any kind of photo
manipulation or image editing in general. Photoshop is just the name of
one particular image editing program, which should be avoided since it is
proprietary. There are plenty of free programs for editing images, such as the
GIMP. [25]

 “Piracy”

 Publishers often refer to copying they don’t approve of as “piracy.” In this way,
they imply that it is ethically equivalent to attacking ships on the high seas,
kidnapping and murdering the people on them. Based on such propaganda, they
have procured laws in most of the world to forbid copying in most (or sometimes
all) circumstances. (They are still pressuring to make these prohibitions more
complete.)

 If you don’t believe that copying not approved by the publisher is just like
kidnapping and murder, you might prefer not to use the word “piracy” to describe
it. Neutral terms such as “unauthorized copying” (or “prohibited copying” for the
situation where it is illegal) are available for use instead. Some of us might
even prefer to use a positive term such as “sharing information with your
neighbor.”

 A US judge, presiding over a trial for copyright infringement, recognized that
“piracy” and “theft” are smear words. [26]

 “PowerPoint”

 Please avoid using the term “PowerPoint” to mean any kind of slide
presentation. “PowerPoint” is just the name of one particular proprietary program
to make presentations. For your freedom’s sake, you should use only free software to
make your presentations. Recommended options include TEX’s beamer class and
OpenOffice.org’s Impress.

 “Protection”

 Publishers’ lawyers love to use the term “protection” to describe copyright.
This word carries the implication of preventing destruction or suffering;
therefore, it encourages people to identify with the owner and publisher who
benefit from copyright, rather than with the users who are restricted by
it.

 It is easy to avoid “protection” and use neutral terms instead. For example,
instead of saying, “Copyright protection lasts a very long time,” you can say,
“Copyright lasts a very long time.”

 Likewise, instead of saying, “protected by copyright,” you can say, “covered by
copyright” or just “copyrighted.”

 If you want to criticize copyright rather than be neutral, you can use the term
“copyright restrictions.” Thus, you can say, “Copyright restrictions last a very long
time.”

 The term “protection” is also used to describe malicious features. For instance,
“copy protection” is a feature that interferes with copying. From the user’s point of
view, this is obstruction. So we could call that malicious feature “copy obstruction.”
More often it is called Digital Restrictions Management (DRM)—see the Defective
by Design campaign, at DefectiveByDesign.org.

 “RAND (Reasonable and Non-Discriminatory)”

 Standards bodies that promulgate patent-restricted standards that prohibit free
software typically have a policy of obtaining patent licenses that require a fixed fee
per copy of a conforming program. They often refer to such licenses by the term
“RAND,” which stands for “reasonable and non-discriminatory.”

 That term whitewashes a class of patent licenses that are normally neither
reasonable nor nondiscriminatory. It is true that these licenses do not discriminate
against any specific person, but they do discriminate against the free software
community, and that makes them unreasonable. Thus, half of the term “RAND” is
deceptive and the other half is prejudiced.

 Standards bodies should recognize that these licenses are discriminatory, and
drop the use of the term “reasonable and non-discriminatory” or “RAND” to
describe them. Until they do so, writers who do not wish to join in the
whitewashing would do well to reject that term. To accept and use it merely
because patent-wielding companies have made it widespread is to let those
companies dictate the views you express.

 We suggest the term “uniform fee only,” or “UFO” for short, as a replacement. It
is accurate because the only condition in these licenses is a uniform royalty
fee.

 “SaaS” or “Software as a Service”

 We used to say that SaaS (short for “Software as a Service”) is an injustice, but
then we found that there was a lot of variation in people’s understanding of which
activities count as SaaS. So we switched to a new term, “Service as a Software
Substitute” or “SaaSS.” This term has two advantages: it wasn’t used before, so
our definition is the only one, and it explains what the injustice consists
of.

 See “Who Does That Server Really Serve?” ([link]) for discussion of this
issue.

 In Spanish we continue to use the term “software como servicio” because the joke
of “software como ser vicio” [27] is too good to give up.

 “Sell Software”

 The term “sell software” is ambiguous. Strictly speaking, exchanging a copy of a
free program for a sum of money is selling the program, and there is nothing wrong
with doing that. However, people usually associate the term “selling software” with
proprietary restrictions on the subsequent use of the software. You can
be clear, and prevent confusion, by saying either “distributing copies of a
program for a fee” or “imposing proprietary restrictions on the use of a
program.”

 See “Selling Free Software” ([link]) for further discussion of this issue.

 “Sharing Economy”

 The term “sharing economy” is not a good way to refer to services such as Uber
and Airbnb that arrange business transactions between people. We use the term
“sharing” to refer to noncommercial cooperation, including noncommercial
redistribution of exact copies of published works. Stretching the word “sharing” to
include these transactions undermines its meaning, so we don’t use it in this
context.

 A more suitable term for businesses like Uber is the “piecework service
economy.”

 “Skype”

 Please avoid using the term “skype” as a verb, meaning any kind of video
communication or telephony over the internet in general. “Skype” is just the name
of one particular proprietary program, one that spies on its users. [28] If you want to
make video and voice calls over the internet in a way that respects both your
freedom and your privacy, try one of the numerous free Skype replacements, at
https://libreplanet.org/wiki/Group:Skype_Replacement.

 “Software Industry”

 The term “software industry” encourages people to imagine that software is
always developed by a sort of factory and then delivered to “consumers.” The free
software community shows this is not the case. Software businesses exist, and
various businesses develop free and/or nonfree software, but those that develop free
software are not run like factories.

 The term “industry” is being used as propaganda by advocates of software
patents. They call software development “industry” and then try to argue that this
means it should be subject to patent monopolies. The European Parliament,
rejecting software patents in 2003, voted to define “industry” as “automated
production of material goods.” [29]

 “Source Model”

 Wikipedia uses the term “source model” in a confused and ambiguous way.
Ostensibly it refers to how a program’s source is distributed, but the text confuses
this with the development methodology. It distinguishes “open source” and
“shared source” as answers, but they overlap— Microsoft uses the latter as
a marketing term to cover a range of practices, some of which are “open
source.” Thus, this term really conveys no coherent information, but it
provides an opportunity to say “open source” in pages describing free software
programs.

 “Terminal”

 Mobile phones and tablets are computers, and people should be able to do their
computing on them using free software. To call them “terminals” supposes that all
they are good for is to connect to servers, which is a bad way to do your own
computing.

 “Theft”

 The supporters of a too-strict, repressive form of copyright often use words like
“stolen” and “theft” to refer to copyright infringement. This is spin, but they would
like you to take it for objective truth.

 Under the US legal system, copyright infringement is not theft. Laws about theft
are not applicable to copyright infringement. The supporters of repressive
copyright are making an appeal to authority—and misrepresenting what
authority says. [30] which shows what can properly be described as “copyright
theft.”

 Unauthorized copying is forbidden by copyright law in many circumstances (not
all!), but being forbidden doesn’t make it wrong. In general, laws don’t define right
and wrong. Laws, at their best, attempt to implement justice. If the laws (the
implementation) don’t fit our ideas of right and wrong (the spec), the laws are what
should change.

 A US judge, presiding over a trial for copyright infringement, recognized that
“piracy” and “theft” are smear words. [31]

 “Trusted Computing”

 “Trusted computing” is the proponents’ name for a scheme to redesign
computers so that application developers can trust your computer to obey them
instead of you. [32] From their point of view, it is “trusted”; from your point of view, it
is “treacherous.”

 “Vendor”

 Please don’t use the term “vendor” to refer generally to anyone that develops or
packages software. Many programs are developed in order to sell copies, and their
developers are therefore their vendors; this even includes some free software
packages. However, many programs are developed by volunteers or organizations
which do not intend to sell copies. These developers are not vendors. Likewise, only
some of the packagers of GNU/Linux distributions are vendors. We recommend the
general term “supplier” instead.

 Endnotes

 [1] See [link] for the full definition of free software.

 [2] See “Free Software Is Even More Important Now” ([link]) and “Who Does That Server
Really Serve?” ([link]) for more on this.

 [3] See “The BSD License Problem,” at http://gnu.org/philosophy/bsd.html.

 [4] See “Various Licenses and Comments about Them,” at
http://gnu.org/licenses/license-list.html.

 [5] See “Why Open Source Misses the Point of Free Software” ([link]).

 [6] See [link] for more on proprietary software.

 [7] John Harris, “Why Hackers and Spooks Want Our Heads in the Cloud,” 25 April 2011,
http://guardian.co.uk/commentisfree/2011/apr/25/hackers-spooks-cloud-antiauthoritarian-dream.

 [8] See “Who Does That Server Really Serve?” ([link]) for more on this issue.

 [9] Peter Mell and Anthony Grance,
“The NIST Definition of Cloud Computing: Recommendations of the National Institute
of Standards and Technology,” NIST Special Publication 800-145 (September 2011),
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

 [10] Dan Farber, “Oracle’s Ellison Nails Cloud Computing,” 26 September 2008,
http://news.cnet.com/8301-13953_3-10052188-80.html.

 [11] See “Misinterpreting Copyright” ([link]) for more on this.

 [12] Lara O’Reilly, “A Former Googler Has Declared War on Ad Blockers with a New Startup
That Tackles Them in an Unorthodox Way,” 18 June 2015, http://uk.businessinsider.com/former-google-exec-launches-sourcepoint-with-10-million-series-a-funding-2015-6?r=US&IR=T.

 [13] See “Free Software Is Even More Important Now” ([link]) for more on this.

 [14] Owen Hatherley, “Be a User, Not a Consumer: How Capitalism Has Changed Our
Language,” 11 August 2013, http://theguardian.com/commentisfree/2013/aug/11/capitalism-language-raymond-williams.

 [15] An unedited transcript of American rock musician Courtney Love’s 16 May 2000
speech to the Digital Hollywood online-entertainment conference is available at
http://www.salon.com/2000/06/14/love_7/.

 [16] See [link] for the reason why.

 [17] Cory Doctorow, “Encryption Won’t Work If It Has a Back Door Only the ‘Good Guys’
Have Keys To,” 1 May 2015, http://theguardian.com/technology/2015/may/01/encryption-wont-work-if-it-has-a-back-door-only-the-good-guys-have-keys-to-.

 [18] See http://www.gnu.org/philosophy/floss-and-foss.html for more on this.

 [19] See previous footnote.

 [20] “DuckDuckGo Privacy Policy,” last modified on 11 April 2012,
https://duckduckgo.com/privacy.

 [21] See my article “On Hacking,” at http://stallman.org/articles/on-hacking.html.

 [22] Richard Stallman, “Public Awareness of Copyright, WIPO, June 2002,” last updated in
2014, http://gnu.org/philosophy/wipo-PublicAwarenessOfCopyright-2002.html.

 [23] See also “Linux and the GNU System” ([link]) for more on the history of the GNU/Linux
system as it relates to this issue of naming.

 [24] See “Why Open Source Misses the Point of Free Software” ([link]) for a complete
explanation.

 [25] See http://directory.fsf.org/wiki/GIMP.

 [26] Ernesto Van der Sar, “MPAA Banned from Using Piracy and Theft Terms in Hotfile
Trial,” 29 November 2013, http://torrentfreak.com/mpaa-banned-from-using-piracy-and-theft-terms-in-hotfile-trial-131129.

 [27] “software, as being pernicious” (sp.)

 [28] See http://gnu.org/proprietary/proprietary-surveillance.html#SpywareInSkype
for more on this.

 [29] European Parliament, “Directive on the Patentability of Computer-Implemented Inventions,”
24 September 2003, http://web.archive.org/web/20071222001014/http://www.swpat.ffii.org/papers/europarl0309.

 [30] To refute them, you can point to the real case of Harper Lee suing her agent for allegedly
duping her into assigning him the copyright on To Kill a Mockingbird.

 [31] See footnote 25, on [link].

 [32] See “Can You Trust Your Computer?” ([link]) for more on this issue.

 Part III
Part III: Copyright and Injustice

 18 The Right to Read

 19 Misinterpreting Copyright—A Series of Errors

 20 Science Must Push Copyright Aside

 21 Copyright vs. Communityin the Age of Computer Networks

 Chapter 18
The Right to Read

 Copyright © 1996, 2002, 2007, 2009, 2010, 2014 Richard Stallman
 This essay was written in 1996 and was published as “The Right to Read: A Dystopian
Short Story” in Communications of the ACM, vol. 40, n. 2, February 1997. This version is part of
Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

From
The Road to Tycho, a collection of articles about the antecedents of the Lunarian
Revolution, published in Luna City in 2096.

For Dan Halbert, the road to Tycho began in college—when Lissa Lenz asked to
borrow his computer. Hers had broken down, and unless she could borrow another,
she would fail her midterm project. There was no one she dared ask, except
Dan.

 This put Dan in a dilemma. He had to help her—but if he lent her his computer,
she might read his books. Aside from the fact that you could go to prison for many
years for letting someone else read your books, the very idea shocked him
at first. Like everyone, he had been taught since elementary school that
sharing books was nasty and wrong—something that only pirates would
do.

 And there wasn’t much chance that the SPA—the Software Protection
Authority—would fail to catch him. In his software class, Dan had learned that each
book had a copyright monitor that reported when and where it was read, and by
whom, to Central Licensing. (They used this information to catch reading pirates,
but also to sell personal interest profiles to retailers.) The next time his computer
was networked, Central Licensing would find out. He, as computer owner,
would receive the harshest punishment—for not taking pains to prevent the
crime.

 Of course, Lissa did not necessarily intend to read his books. She might want the
computer only to write her midterm. But Dan knew she came from a middle-class
family and could hardly afford the tuition, let alone her reading fees. Reading
his books might be the only way she could graduate. He understood this
situation; he himself had had to borrow to pay for all the research papers he
read. (Ten percent of those fees went to the researchers who wrote the

papers; since Dan aimed for an academic career, he could hope that his own
research papers, if frequently referenced, would bring in enough to repay this
loan.)

 Later on, Dan would learn there was a time when anyone could go to the library
and read journal articles, and even books, without having to pay. There were
independent scholars who read thousands of pages without government library
grants. But in the 1990s, both commercial and nonprofit journal publishers had
begun charging fees for access. By 2047, libraries offering free public access to
scholarly literature were a dim memory.

 There were ways, of course, to get around the SPA and Central Licensing. They
were themselves illegal. Dan had had a classmate in software, Frank Martucci, who
had obtained an illicit debugging tool, and used it to skip over the copyright
monitor code when reading books. But he had told too many friends about it, and
one of them turned him in to the SPA for a reward (students deep in debt were
easily tempted into betrayal). In 2047, Frank was in prison, not for pirate reading,
but for possessing a debugger.

 Dan would later learn that there was a time when anyone could have debugging
tools. There were even free debugging tools available on CD or downloadable over
the net. But ordinary users started using them to bypass copyright monitors, and
eventually a judge ruled that this had become their principal use in actual
practice. This meant they were illegal; the debuggers’ developers were sent to
prison.

 Programmers still needed debugging tools, of course, but debugger vendors in
2047 distributed numbered copies only, and only to officially licensed and bonded
programmers. The debugger Dan used in software class was kept behind a special
firewall so that it could be used only for class exercises.

 It was also possible to bypass the copyright monitors by installing a modified
system kernel. Dan would eventually find out about the free kernels, even entire free
operating systems, that had existed around the turn of the century. But not only
were they illegal, like debuggers—you could not install one if you had one, without
knowing your computer’s root password. And neither the FBI nor Microsoft
Support would tell you that.

 Dan concluded that he couldn’t simply lend Lissa his computer. But he couldn’t
refuse to help her, because he loved her. Every chance to speak with her filled him
with delight. And that she chose him to ask for help, that could mean she loved him
too.

 Dan resolved the dilemma by doing something even more unthinkable—he lent
her the computer, and told her his password. This way, if Lissa read his books,
Central Licensing would think he was reading them. It was still a crime, but the
SPA would not automatically find out about it. They would only find out if Lissa
reported him.

 Of course, if the school ever found out that he had given Lissa his own password,
it would be curtains for both of them as students, regardless of what she had used it
for. School policy was that any interference with their means of monitoring
students’ computer use was grounds for disciplinary action. It didn’t matter
whether you did anything harmful—the offense was making it hard for

the administrators to check on you. They assumed this meant you were
doing something else forbidden, and they did not need to know what it
was.

 Students were not usually expelled for this—not directly. Instead they were
banned from the school computer systems, and would inevitably fail all their
classes.

 Later, Dan would learn that this kind of university policy started only in the
1980s, when university students in large numbers began using computers.
Previously, universities maintained a different approach to student discipline;
they punished activities that were harmful, not those that merely raised
suspicion.

 Lissa did not report Dan to the SPA. His decision to help her led to their
marriage, and also led them to question what they had been taught about piracy as
children. The couple began reading about the history of copyright, about the Soviet
Union and its restrictions on copying, and even the original United States
Constitution. They moved to Luna, where they found others who had likewise
gravitated away from the long arm of the SPA. When the Tycho Uprising
began in 2062, the universal right to read soon became one of its central
aims.

 Author’s Notes

 	This story is supposedly a historical article that will be written in the
 future by someone else, describing Dan Halbert’s youth under a repressive
 society shaped by the enemies that use “pirate” as propaganda. So it uses
 the terminology of that society. I have tried to project it from today so
 as to sound even more oppressive. See “Piracy,” on [link].

 	The following note has been updated several times since the first
 publication of the story. The right to read is a battle being fought today.
 Although it may take 50 years for our present way of life to fade into
 obscurity, most of the specific laws and practices described above have
 already been proposed; many have been enacted into law in the US
 and elsewhere. In the US, the 1998 Digital Millennium Copyright Act
 (DMCA) established the legal basis to restrict the reading and lending
 of computerized books (and other works as well). The European Union
 imposed similar restrictions in a 2001 copyright directive. In France,
 under the DADVSI law adopted in 2006, mere possession of a copy of
 DeCSS, the free program to decrypt video on a DVD, is a crime.
 In 2001, Disney-funded Senator Hollings proposed a bill called the
 SSSCA that would require every new computer to have mandatory

 copy-restriction facilities that the user cannot bypass. Following the
 Clipper chip and similar US government key-escrow proposals, this
 shows a long-term trend: computer systems are increasingly set
 up to give absentees with clout control over the people actually
 using the computer system. The SSSCA was later renamed to the
 unpronounceable CBDTPA, which was glossed as the “Consume But
 Don’t Try Programming Act.”

The Republicans took control of the US Senate shortly thereafter. They
 are less tied to Hollywood than the Democrats, so they did not press
 these proposals. Now that the Democrats are back in control, the danger
 is once again higher.

In 2001 the US began attempting to use the proposed “Free Trade”
 Area of the Americas (FTAA) treaty to impose the same rules on all
 the countries in the Western Hemisphere. The FTAA is one of the
 so-called “free trade” treaties, which are actually designed to give business
 increased power over democratic governments; imposing laws like the
 DMCA is typical of this spirit. The FTAA was effectively killed by Lula,
 President of Brazil, who rejected the DMCA requirement and others.

Since then, the US has imposed similar requirements on countries such as
 Australia and Mexico through bilateral “free trade” agreements, and on
 countries such as Costa Rica through another treaty, CAFTA. Ecuador’s
 President Correa refused to sign a “free trade” agreement with the US,
 but I’ve heard Ecuador had adopted something like the DMCA in 2003.

One of the ideas in the story was not proposed in reality until 2002. This
 is the idea that the FBI and Microsoft will keep the root passwords for
 your personal computers, and not let you have them.

The proponents of this scheme have given it names such as “trusted
 computing” and “Palladium.” We call it “treacherous computing” [1]
 because the effect is to make your computer obey companies even to the
 extent of disobeying and defying you. This was implemented in 2007 as
 part of Windows Vista; [2] we expect Apple to do something similar. In
 this scheme, it is the manufacturer that keeps the secret code, but the
 FBI would have little trouble getting it.

What Microsoft keeps is not exactly a password in the traditional sense;
 no person ever types it on a terminal. Rather, it is a signature and
 encryption key that corresponds to a second key stored in your computer.
 This enables Microsoft, and potentially any web sites that cooperate with
 Microsoft, the ultimate control over what the user can do on his own
 computer.

Vista also gives Microsoft additional powers; for instance, Microsoft can
 forcibly install upgrades, and it can order all machines running Vista to
 refuse to run a certain device driver. The main purpose of Vista’s many
 restrictions is to impose DRM (Digital Restrictions Management) that
 users can’t overcome. The threat of DRM is why we have established the

 Defective by Design campaign, at DefectiveByDesign.org.

When this story was first written, the SPA was threatening small Internet
 service providers, demanding they permit the SPA to monitor all users.
 Most ISPs surrendered when threatened, because they cannot afford
 to fight back in court. One ISP, Community ConneXion in Oakland,
 California, refused the demand and was actually sued. The SPA later
 dropped the suit, but obtained the DMCA, which gave them the power
 they sought. The SPA, which actually stands for Software Publishers
 Association, has been replaced in its police-like role by the Business
 Software Alliance. The BSA is not, today, an official police force;
 unofficially, it acts like one. Using methods reminiscent of the erstwhile
 Soviet Union, it invites people to inform on their coworkers and friends.
 A BSA terror campaign in Argentina in 2001 made slightly veiled threats
 that people sharing software would be raped.

The university security policies described above are not imaginary.
 For example, a computer at one Chicago-area university displayed this
 message upon login:

 This system is for the use of authorized users only. Individuals using
 this computer system without authority or in the excess of their authority
 are subject to having all their activities on this system monitored and
 recorded by system personnel. In the course of monitoring individuals
 improperly using this system or in the course of system maintenance,
 the activities of authorized user may also be monitored. Anyone using
 this system expressly consents to such monitoring and is advised that if
 such monitoring reveals possible evidence of illegal activity or violation of
 University regulations system personnel may provide the evidence of such
 monitoring to University authorities and/or law enforcement officials.

 This is an interesting approach to the Fourth Amendment: pressure most
 everyone to agree, in advance, to waive their rights under it.

 Bad News

 The battle for the right to read is already in progress. The enemy is is
organized, while we are not, so it is going against us. Examples of bad
things that have happened since the original publication of this article
include:

 	Today’s commercial e-books abolish readers’ traditional freedoms. See
 “The Danger of E-Books” ([link]) for more on this.

 	The publication of a “biology textbook” web site [3] that you can access only
 by signing a contract not to lend it to anyone else, [4] which the publisher
 can revoke at will.

 	Electronic publishing’s curtailment of user freedom. [5]

 	Books inside computers: [6] software to control who can read books and
 documents on a computer.

 If we want to stop the bad news and create some good news, we need to
organize and fight. The FSF’s Defective by Design campaign has made a start;
subscribe to the campaign’s mailing list to lend a hand. And join the FSF, at
http://my.fsf.org/join, to help fund our work.

 References

 	United States Patent and Trademark Office, Intellectual Property [sic]
 and the National Information Infrastructure: The Report of the Working
 Group on Intellectual Property [sic] Rights, Washington, DC: GPO, 1995.
 (See “Did You Say ‘Intellectual Property’? It’s a Seductive Mirage” ([link])
 for why the term “Intellectual Property” is incoherent and should never
 be used.)

 	Samuelson, Pamela, “The Copyright Grab,” Wired, January 1996, 4.01,
 http://wired.com/wired/archive/4.01/white.paper_pr.html.

 	Boyle, James, “Sold Out,” New York Times, 31 March 1996, sec. 4, p.
 15; also available at https://law.duke.edu/boylesite/sold_out.htm.

 	Editorial, Washington Post, “Public Data or Private Data,” 3 November 1996,
 sec. C, p. 6, http://web.archive.org/web/20130508120533/http://www.interesting-people.org/archives/interesting-people/199611/msg00012.html.

 	Union for the Public Domain—an organization which aims to resist and
 reverse the overextension of copyright and patent powers.

 Endnotes

 [1] See “Can You Trust Your Computer?” ([link]) for more on “trusted computing.”

 [2] See http://badvista.fsf.org/ for our campaigns against Windows Vista.

 [3] Nature America Inc., “Announcing Principles of Biology, an Interactive Textbook by
Nature Education,” http://nature.com/nature_education/biology.html.

 [4] Nature America Inc., “Principles of Science Privacy Notice,” accessed August 2015,
http://nature.com/principles/viewTermsOfUse.

 [5] See Don Clark’s article “Seybold Opens Chapter on Digital Books” (31 August 1999,
http://www.zdnet.com/article/seybold-opens-chapter-on-digital-books/), about
distribution of books in electronic form and copyright issues affecting the right to read a
copy.

 [6] “Microsoft Announces New Software for Reading on Screen,” 30 August 1999,
http://microsoft.com/en-us/news/press/1999/Aug99/SeyboldPR.aspx.

 Chapter 19
Misinterpreting Copyright—A Series of Errors

 Copyright © 2002, 2003, 2007, 2009–2011 Free Software Foundation, Inc.
 This essay was first published on http://gnu.org, in 2002. This version is part of Free Software,
Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

 Something strange and dangerous is happening in copyright law. Under the US
Constitution, copyright exists to benefit users—those who read books, listen to
music, watch movies, or run software—not for the sake of publishers or authors. Yet
even as people tend increasingly to reject and disobey the copyright restrictions
imposed on them “for their own benefit,” the US government is adding more
restrictions, and trying to frighten the public into obedience with harsh new
penalties.

 How did copyright policies come to be diametrically opposed to their stated
purpose? And how can we bring them back into alignment with that purpose? To
understand, we should start by looking at the root of United States copyright law:
the US Constitution.

 Copyright in the US Constitution

 When the US Constitution was drafted, the idea that authors were entitled to a
copyright monopoly was proposed—and rejected. The founders of our country
adopted a different premise, that copyright is not a natural right of authors, but an
artificial concession made to them for the sake of progress. The Constitution gives
permission for a copyright system with this clause (Article I, Section 8,
Clause 8):

 [Congress shall have the power] to promote the Progress of Science and
 the useful Arts, by securing for limited Times to Authors and Inventors the
 exclusive Right to their respective Writings and Discoveries.

 The Supreme Court has repeatedly affirmed that promoting progress means
benefit for the users of copyrighted works. For example, in Fox Film v. Doyal, [1] the
court said,

 The sole interest of the United States and the primary object in conferring
 the [copyright] monopoly lie in the general benefits derived by the public from
 the labors of authors.

 This fundamental decision explains why copyright is not required by the
Constitution, only permitted as an option—and why it is supposed to last for
“limited times.” If copyright were a natural right, something that authors have
because they deserve it, nothing could justify terminating this right after a certain
period of time, any more than everyone’s house should become public property after
a certain lapse of time from its construction.

 The “Copyright Bargain”

 The copyright system works by providing privileges and thus benefits to
publishers and authors; but it does not do this for their sake. Rather, it does this to
modify their behavior: to provide an incentive for authors to write more and publish
more. In effect, the government spends the public’s natural rights, on the public’s
behalf, as part of a deal to bring the public more published works. Legal scholars
call this concept the “copyright bargain.” It is like a government purchase of a
highway or an airplane using taxpayers’ money, except that the government spends
our freedom instead of our money.

 But is the bargain as it exists actually a good deal for the public? Many
alternative bargains are possible; which one is best? Every issue of copyright policy
is part of this question. If we misunderstand the nature of the question, we will tend
to decide the issues badly.

 The Constitution authorizes granting copyright powers to authors. In practice,
authors typically cede them to publishers; it is usually the publishers, not the
authors, who exercise these powers and get most of the benefits, though authors
may get a small portion. Thus it is usually the publishers that lobby to increase
copyright powers. To better reflect the reality of copyright rather than the myth,
this article refers to publishers rather than authors as the holders of copyright
powers. It also refers to the users of copyrighted works as “readers,” even though
using them does not always mean reading, because “the users” is remote and
abstract.

 The First Error: “Striking a Balance”

 The copyright bargain places the public first: benefit for the reading public is
an end in itself; benefits (if any) for publishers are just a means toward

that end. Readers’ interests and publishers’ interests are thus qualitatively
unequal in priority. The first step in misinterpreting the purpose of copyright
is the elevation of the publishers to the same level of importance as the
readers.

 It is often said that US copyright law is meant to “strike a balance” between the
interests of publishers and readers. Those who cite this interpretation present it as a
restatement of the basic position stated in the Constitution; in other words, it is
supposed to be equivalent to the copyright bargain.

 But the two interpretations are far from equivalent; they are different
conceptually, and different in their implications. The balance concept assumes that
the readers’ and publishers’ interests differ in importance only quantitatively, in how
much weight we should give them, and in what actions they apply to. The term
“stakeholders” is often used to frame the issue in this way; it assumes that all kinds
of interest in a policy decision are equally important. This view rejects
the qualitative distinction between the readers’ and publishers’ interests
which is at the root of the government’s participation in the copyright
bargain.

 The consequences of this alteration are far-reaching, because the great
protection for the public in the copyright bargain—the idea that copyright
privileges can be justified only in the name of the readers, never in the name of the
publishers—is discarded by the “balance” interpretation. Since the interest of the
publishers is regarded as an end in itself, it can justify copyright privileges; in other
words, the “balance” concept says that privileges can be justified in the name of
someone other than the public.

 As a practical matter, the consequence of the “balance” concept is to reverse the
burden of justification for changes in copyright law. The copyright bargain places
the burden on the publishers to convince the readers to cede certain freedoms. The
concept of balance reverses this burden, practically speaking, because there is
generally no doubt that publishers will benefit from additional privilege. Unless
harm to the readers can be proved, sufficient to “outweigh” this benefit, we are led
to conclude that the publishers are entitled to almost any privilege they
request.

 Since the idea of “striking a balance” between publishers and readers denies the
readers the primacy they are entitled to, we must reject it.

 Balancing against What?

 When the government buys something for the public, it acts on behalf of the
public; its responsibility is to obtain the best possible deal—best for the public, not
for the other party in the agreement.

 For example, when signing contracts with construction companies to build
highways, the government aims to spend as little as possible of the public’s

money. Government agencies use competitive bidding to push the price
down.

 As a practical matter, the price cannot be zero, because contractors will not bid
that low. Although not entitled to special consideration, they have the usual rights
of citizens in a free society, including the right to refuse disadvantageous contracts;
even the lowest bid will be high enough for some contractor to make money. So
there is indeed a balance, of a kind. But it is not a deliberate balancing of two
interests each with claim to special consideration. It is a balance between a public
goal and market forces. The government tries to obtain for the taxpaying
motorists the best deal they can get in the context of a free society and a free
market.

 In the copyright bargain, the government spends our freedom instead of our
money. Freedom is more precious than money, so government’s responsibility to
spend our freedom wisely and frugally is even greater than its responsibility to
spend our money thus. Governments must never put the publishers’ interests on a
par with the public’s freedom.

 Not “Balance” but “Trade-Off”

 The idea of balancing the readers’ interests against the publishers’ is the wrong
way to judge copyright policy, but there are indeed two interests to be
weighed: two interests of the readers. Readers have an interest in their own
freedom in using published works; depending on circumstances, they may also
have an interest in encouraging publication through some kind of incentive
system.

 The word “balance,” in discussions of copyright, has come to stand as shorthand
for the idea of “striking a balance” between the readers and the publishers.
Therefore, to use the word “balance” in regard to the readers’ two interests would be
confusing. [2] We need another term.

 In general, when one party has two goals that partly conflict, and cannot
completely achieve both of them, we call this a “trade-off.” Therefore, rather than
speaking of “striking the right balance” between parties, we should speak
of “finding the right trade-off between spending our freedom and keeping
it.”

 The Second Error: Maximizing One Output

 The second mistake in copyright policy consists of adopting the goal of
maximizing—not just increasing—the number of published works. The erroneous

concept of “striking a balance” elevated the publishers to parity with the readers;
this second error places them far above the readers.

 When we purchase something, we do not generally buy the whole quantity in
stock or the most expensive model. Instead we conserve funds for other purchases,
by buying only what we need of any particular good, and choosing a model of
sufficient rather than highest quality. The principle of diminishing returns suggests
that spending all our money on one particular good is likely to be an inefficient
allocation of resources; we generally choose to keep some money for another
use.

 Diminishing returns applies to copyright just as to any other purchase. The first
freedoms we should trade away are those we miss the least, and whose sacrifice
gives the largest encouragement to publication. As we trade additional
freedoms that cut closer to home, we find that each trade is a bigger sacrifice
than the last, while bringing a smaller increment in literary activity. Well
before the increment becomes zero, we may well say it is not worth its
incremental price; we would then settle on a bargain whose overall result
is to increase the amount of publication, but not to the utmost possible
extent.

 Accepting the goal of maximizing publication rejects all these wiser,
more advantageous bargains in advance—it dictates that the public must
cede nearly all of its freedom to use published works, for just a little more
publication.

 The Rhetoric of Maximization

 In practice, the goal of maximizing publication regardless of the cost to freedom
is supported by widespread rhetoric which asserts that public copying is
illegitimate, unfair, and intrinsically wrong. For instance, the publishers call people
who copy “pirates,” a smear term designed to equate sharing information
with your neighbor with attacking a ship. (This smear term was formerly
used by authors to describe publishers who found lawful ways to publish
unauthorized editions; its modern use by the publishers is almost the reverse.)
This rhetoric directly rejects the constitutional basis for copyright, but
presents itself as representing the unquestioned tradition of the American legal
system.

 The “pirate” rhetoric is typically accepted because it so pervades the media that
few people realize how radical it is. It is effective because if copying by the public is
fundamentally illegitimate, we can never object to the publishers’ demand
that we surrender our freedom to do so. In other words, when the public is
challenged to show why publishers should not receive some additional power,
the most important reason of all—“We want to copy”—is disqualified in
advance.

 This leaves no way to argue against increasing copyright power except using side
issues. Hence, opposition to stronger copyright powers today almost exclusively cites
side issues, and never dares cite the freedom to distribute copies as a legitimate
public value.

 As a practical matter, the goal of maximization enables publishers to argue that
“A certain practice is reducing our sales—or we think it might—so we presume it
diminishes publication by some unknown amount, and therefore it should be
prohibited.” We are led to the outrageous conclusion that the public good is
measured by publishers’ sales: What’s good for General Media is good for the
USA.

 The Third Error: Maximizing Publishers’ Power

 Once the publishers have obtained assent to the policy goal of maximizing
publication output at any cost, their next step is to infer that this requires giving
them the maximum possible powers—making copyright cover every imaginable use
of a work, or applying some other legal tool such as “shrink wrap” licenses to
equivalent effect. This goal, which entails the abolition of “fair use” and the “right of
first sale,” is being pressed at every available level of government, from states of the
US to international bodies.

 This step is erroneous because strict copyright rules obstruct the creation of
useful new works. For instance, Shakespeare borrowed the plots of some of his plays
from works others had published a few decades before, so if today’s copyright law
had been in effect, his plays would have been illegal.

 Even if we wanted the highest possible rate of publication, regardless of cost to
the public, maximizing publishers’ power is the wrong way to get it. As a means of
promoting progress, it is self-defeating.

 The Results of the Three Errors

 The current trend in copyright legislation is to hand publishers broader powers
for longer periods of time. The conceptual basis of copyright, as it emerges distorted
from the series of errors, rarely offers a basis for saying no. Legislators give lip
service to the idea that copyright serves the public, while in fact giving publishers
whatever they ask for.

 For example, here is what Senator Hatch said when introducing S. 483, [3] a 1995
bill to increase the term of copyright by 20 years:

 I believe we are now at such a point with respect to the question of whether
 the current term of copyright adequately protects the interests of authors and
 the related question of whether the term of protection continues to provide a
 sufficient incentive for the creation of new works of authorship. [4]

 This bill extended the copyright on already published works written since the
1920s. This change was a giveaway to publishers with no possible benefit to the
public, since there is no way to retroactively increase now the number of books
published back then. Yet it cost the public a freedom that is meaningful
today—the freedom to redistribute books from that era. Note the use of
the propaganda term, “protect,” [5] which embodies the second of the three
errors.

 The bill also extended the copyrights of works yet to be written. For works
made for hire, copyright would last 95 years instead of the present 75 years.
Theoretically this would increase the incentive to write new works; but any
publisher that claims to need this extra incentive should be required to
substantiate the claim with projected balance sheets for 75 years in the
future.

 Needless to say, Congress did not question the publishers’ arguments: a law
extending copyright was enacted in 1998. It was officially called the Sonny Bono
Copyright Term Extension Act, named after one of its sponsors who died earlier
that year. We usually call it the Mickey Mouse Copyright Act, since we presume its
real motive was to prevent the copyright on the appearance of Mickey Mouse
from expiring. Bono’s widow, who served the rest of his term, made this
statement:

 Actually, Sonny wanted the term of copyright protection to last forever.
 I am informed by staff that such a change would violate the Constitution. I
 invite all of you to work with me to strengthen our copyright laws in all of the
 ways available to us. As you know, there is also Jack Valenti’s [6] proposal for
 term to last forever less one day. Perhaps the Committee may look at that next
 Congress. [7]

 The Supreme Court later heard a case that sought to overturn the law on the
grounds that the retroactive extension fails to serve the Constitution’s goal of
promoting progress. The court responded by abdicating its responsibility to judge
the question; on copyright, the Constitution requires only lip service.

 Another law, passed in 1997, made it a felony to make sufficiently many copies
of any published work, even if you give them away to friends just to be nice.
Previously this was not a crime in the US at all.

 An even worse law, the Digital Millennium Copyright Act (DMCA), was
designed to bring back what was then called “copy protection”—now known as DRM
(Digital Restrictions Management) [8] —which users already detested, by making it a

crime to defeat the restrictions, or even publish information about how
to defeat them. This law ought to be called the “Domination by Media
Corporations Act” because it effectively offers publishers the chance to write their
own copyright law. It says they can impose any restrictions whatsoever on
the use of a work, and these restrictions take the force of law provided
the work contains some sort of encryption or license manager to enforce
them.

 One of the arguments offered for this bill was that it would implement a recent
treaty to increase copyright powers. The treaty was promulgated by the World
“Intellectual Property” [9] Organization, an organization dominated by copyright- and
patent-holding interests, with the aid of pressure from the Clinton administration;
since the treaty only increases copyright power, whether it serves the public interest
in any country is doubtful. In any case, the bill went far beyond what the treaty
required.

 Libraries were a key source of opposition to this bill, especially to the aspects
that block the forms of copying that are considered fair use. How did the publishers
respond? Former representative Pat Schroeder, now a lobbyist for the Association of
American Publishers, said that the publishers “could not live with what [the
libraries were] asking for.” Since the libraries were asking only to preserve part of
the status quo, one might respond by wondering how the publishers had survived
until the present day.

 Congressman Barney Frank, in a meeting with me and others who opposed this
bill, showed how far the US Constitution’s view of copyright has been disregarded.
He said that new powers, backed by criminal penalties, were needed urgently
because the “movie industry is worried,” as well as the “music industry” and other
“industries.” I asked him, “But is this in the public interest?” His response was
telling: “Why are you talking about the public interest? These creative people
don’t have to give up their rights for the public interest!” The “industry”
has been identified with the “creative people” it hires, copyright has been
treated as its entitlement, and the Constitution has been turned upside
down.

 The DMCA was enacted in 1998. As enacted, it says that fair use remains
nominally legitimate, but allows publishers to prohibit all software or hardware that
you could practice it with. Effectively, fair use is prohibited.

 Based on this law, the movie industry has imposed censorship on free software
for reading and playing DVDs, and even on the information about how to read
them. In April 2001, Professor Edward Felten of Princeton University was
intimidated by lawsuit threats from the Recording Industry Association of
America (RIAA) into withdrawing a scientific paper stating what he had
learned about a proposed encryption system for restricting access to recorded
music.

 We are also beginning to see e-books that take away many of readers’ traditional
freedoms—for instance, the freedom to lend a book to your friend, to sell it to a
used book store, to borrow it from a library, to buy it without giving your name to
a corporate data bank, even the freedom to read it twice. Encrypted e-books
generally restrict all these activities—you can read them only with special secret

software designed to restrict you.

 I will never buy one of these encrypted, restricted e-books, and I hope you will
reject them too. If an e-book doesn’t give you the same freedoms as a traditional
paper book, don’t accept it!

 Anyone independently releasing software that can read restricted e-books risks
prosecution. A Russian programmer, Dmitry Sklyarov, was arrested in 2001
while visiting the US to speak at a conference, because he had written
such a program in Russia, where it was lawful to do so. Now Russia is
preparing a law to prohibit it too, and the European Union recently adopted
one.

 Mass-market e-books have been a commercial failure so far, but not because
readers chose to defend their freedom; they were unattractive for other reasons, such
as that computer display screens are not easy surfaces to read from. We can’t rely
on this happy accident to protect us in the long term; the next attempt to promote
e-books will use “electronic paper”—book-like objects into which an encrypted,
restricted e-book can be downloaded. If this paper-like surface proves more
appealing than today’s display screens, we will have to defend our freedom in order
to keep it. Meanwhile, e-books are making inroads in niches: NYU and other dental
schools require students to buy their textbooks in the form of restricted
e-books.

 The media companies are not satisfied yet. In 2001, Disney-funded Senator
Hollings proposed a bill called the “Security Systems Standards and Certification
Act” (SSSCA), [10] which would require all computers (and other digital recording
and playback devices) to have government-mandated copy-restriction systems. That
is their ultimate goal, but the first item on their agenda is to prohibit any
equipment that can tune digital HDTV unless it is designed to be impossible for the
public to “tamper with” (i.e., modify for their own purposes). Since free software is
software that users can modify, we face here for the first time a proposed law that
explicitly prohibits free software for a certain job. Prohibition of other jobs will
surely follow. If the FCC adopts this rule, existing free software such as GNU Radio
would be censored.

 To block these bills and rules requires political action. [11]

 Finding the Right Bargain

 What is the proper way to decide copyright policy? If copyright is a bargain
made on behalf of the public, it should serve the public interest above all. The
government’s duty when selling the public’s freedom is to sell only what it must,
and sell it as dearly as possible. At the very least, we should pare back the extent
of copyright as much as possible while maintaining a comparable level of
publication.

 Since we cannot find this minimum price in freedom through competitive

bidding, as we do for construction projects, how can we find it?

 One possible method is to reduce copyright privileges in stages, and observe the
results. By seeing if and when measurable diminutions in publication occur, we will
learn how much copyright power is really necessary to achieve the public’s purposes.
We must judge this by actual observation, not by what publishers say will happen,
because they have every incentive to make exaggerated predictions of doom if their
powers are reduced in any way.

 Copyright policy includes several independent dimensions, which can be
adjusted separately. After we find the necessary minimum for one policy dimension,
it may still be possible to reduce other dimensions of copyright while maintaining
the desired publication level.

 One important dimension of copyright is its duration, which is now typically on
the order of a century. Reducing the monopoly on copying to ten years, starting
from the date when a work is published, would be a good first step. Another aspect
of copyright, which covers the making of derivative works, could continue for a
longer period.

 Why count from the date of publication? Because copyright on unpublished
works does not directly limit readers’ freedom; whether we are free to copy a work is
moot when we do not have copies. So giving authors a longer time to get a work
published does no harm. Authors (who generally do own the copyright prior to
publication) will rarely choose to delay publication just to push back the end of the
copyright term.

 Why ten years? Because that is a safe proposal; we can be confident on practical
grounds that this reduction would have little impact on the overall viability of
publishing today. In most media and genres, successful works are very profitable in
just a few years, and even successful works are usually out of print well before ten.
Even for reference works, whose useful life may be many decades, ten-year copyright
should suffice: updated editions are issued regularly, and many readers will buy the
copyrighted current edition rather than copy a ten-year-old public domain
version.

 Ten years may still be longer than necessary; once things settle down, we could
try a further reduction to tune the system. At a panel on copyright at a literary
convention, where I proposed the ten-year term, a noted fantasy author sitting
beside me objected vehemently, saying that anything beyond five years was
intolerable.

 But we don’t have to apply the same time span to all kinds of works.
Maintaining the utmost uniformity of copyright policy is not crucial to the public
interest, and copyright law already has many exceptions for specific uses and media.
It would be foolish to pay for every highway project at the rates necessary for the
most difficult projects in the most expensive regions of the country; it is equally
foolish to “pay” for all kinds of art with the greatest price in freedom that we find
necessary for any one kind.

 So perhaps novels, dictionaries, computer programs, songs, symphonies, and
movies should have different durations of copyright, so that we can reduce the
duration for each kind of work to what is necessary for many such works to be
published. Perhaps movies over one hour long could have a 20-year copyright,

because of the expense of producing them. In my own field, computer programming,
three years should suffice, because product cycles are even shorter than
that.

 Another dimension of copyright policy is the extent of fair use: some ways of
reproducing all or part of a published work that are legally permitted even though
it is copyrighted. The natural first step in reducing this dimension of copyright
power is to permit occasional private small-quantity noncommercial copying and
distribution among individuals. This would eliminate the intrusion of the copyright
police into people’s private lives, but would probably have little effect on the sales of
published works. (It may be necessary to take other legal steps to ensure
that shrink-wrap licenses cannot be used to substitute for copyright in
restricting such copying.) The experience of Napster shows that we should also
permit noncommercial verbatim redistribution to the general public—when
so many of the public want to copy and share, and find it so useful, only
draconian measures will stop them, and the public deserves to get what it
wants.

 For novels, and in general for works that are used for entertainment,
noncommercial verbatim redistribution may be sufficient freedom for the
readers. Computer programs, being used for functional purposes (to get
jobs done), call for additional freedoms beyond that, including the freedom
to publish an improved version. See “The Free Software Definition,” in
this book, for an explanation of the freedoms that software users should
have. But it may be an acceptable compromise for these freedoms to be
universally available only after a delay of two or three years from the program’s
publication.

 Changes like these could bring copyright into line with the public’s wish to use
digital technology to copy. Publishers will no doubt find these proposals
“unbalanced”; they may threaten to take their marbles and go home, but they won’t
really do it, because the game will remain profitable and it will be the only game in
town.

 As we consider reductions in copyright power, we must make sure media
companies do not simply replace it with end-user license agreements. It would be
necessary to prohibit the use of contracts to apply restrictions on copying
that go beyond those of copyright. Such limitations on what mass-market
nonnegotiated contracts can require are a standard part of the US legal
system.

 A Personal Note

 I am a software designer, not a legal scholar. I’ve become concerned with
copyright issues because there’s no avoiding them in the world of computer
networks, such as the Internet. As a user of computers and networks for 30

years, I value the freedoms that we have lost, and the ones we may lose
next. As an author, I can reject the romantic mystique of the author as
semidivine creator, often cited by publishers to justify increased copyright
powers for authors—powers which these authors will then sign away to
publishers.

 Most of this article consists of facts and reasoning that you can check, and
proposals on which you can form your own opinions. But I ask you to accept one
thing on my word alone: that authors like me don’t deserve special power over you.
If you wish to reward me further for the software or books I have written, I would
gratefully accept a check—but please don’t surrender your freedom in my
name.

 Endnotes

 [1] Fox Film Corp. v. Doyal, 286 US 123, 1932.

 [2] See Julian Sanchez’s article “The Trouble with ‘Balance’ Metaphors” (4 February 2011,
http://juliansanchez.com/2011/02/04/the-trouble-with-balance-metaphors/) for an
examination of “how the analogy between sound judgment and balancing weights may
constrain our thinking in unhealthy ways.”

 [3] Congressional Record, S. 483, “The Copyright Term Extension Act of 1995,”
2 March 1995, pp. S3390–4.

 [4] Congressional
Record, “Statement on Introduced Bills and Joint Resolutions,” 2 March 1995, p. S3390,
http://gpo.gov/fdsys/pkg/CREC-1995-03-02/pdf/CREC-1995-03-02-pt1-PgS3390-2.pdf.

 [5] See [link] for why use the term “protect” should be avoided in connection with copyright.

 [6] Jack Valenti was a longtime president of the Motion Picture Association of America.

 [7] Congressional Record, remarks of Rep. Bono, 7 October 1998, p. H9952,
http://gpo.gov/fdsys/pkg/CREC-1998-10-07/pdf/CREC-1998-10-07-pt1-PgH9946.pdf.

 [8] See http://gnu.org/proprietary/proprietary-drm.html for more on this issue.

 [9] See “Did You Say “Intellectual Property”? It’s a Seductive Mirage”([link]) for an
explanation of why this term is problematic.

 [10] Since renamed to the unpronounceable CBDTPA, for which a good mnemonic is
“Consume, But Don’t Try Programming Anything,” but it really stands for the “Consumer
Broadband and Digital Television Promotion Act.”

 [11] If you would like to help, I recommend the web sites http://defectivebydesign.org,
http://publicknowledge.org, and http://eff.org.

 Chapter 20
Science Must Push Copyright Aside

Copyright © 2001, 2012 Richard Stallman
 This essay was first published in Nature magazine’s Web Debates forum, on 8 June 2001. This
version is part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed.
(Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 Many points that lead to a conclusion that software freedom must be
 universal often apply to other forms of expressive works, albeit in different ways.
 This essay concerns the application of principles related to software freedom
 to the area of literature. Generally, such issues are orthogonal to software
 freedom, but we include essays like this here since many people interested in
 Free Software want to know more about how the principles can be applied to
 areas other than software.

It should be a truism that the scientific literature exists to disseminate scientific
knowledge, and that scientific journals exist to facilitate the process. It therefore
follows that rules for use of the scientific literature should be designed to help
achieve that goal.

 The rules we have now, known as copyright, were established in the age of
the printing press, an inherently centralized method of mass-production
copying. In a print environment, copyright on journal articles restricted
only journal publishers—requiring them to obtain permission to publish
an article—and would-be plagiarists. It helped journals to operate and
disseminate knowledge, without interfering with the useful work of scientists or
students, either as writers or readers of articles. These rules fit that system
well.

 The modern technology for scientific publishing, however, is the World
Wide Web. What rules would best ensure the maximum dissemination of
scientific articles, and knowledge, on the web? Articles should be distributed in
nonproprietary formats, with open access for all. And everyone should have the
right to “mirror” articles—that is, to republish them verbatim with proper
attribution.

 These rules should apply to past as well as future articles, when they are
distributed in electronic form. But there is no crucial need to change the present
copyright system as it applies to paper publication of journals because the problem
is not in that domain.

 Unfortunately, it seems that not everyone agrees with the truisms that began
this article. Many journal publishers appear to believe that the purpose of scientific
literature is to enable them to publish journals so as to collect subscriptions from
scientists and students. Such thinking is known as “confusion of the means with the
ends.”

 Their approach has been to restrict access even to read the scientific literature to
those who can and will pay for it. They use copyright law, which is still in force
despite its inappropriateness for computer networks, as an excuse to stop scientists
from choosing new rules.

 For the sake of scientific cooperation and humanity’s future, we must reject that
approach at its root—not merely the obstructive systems that have been instituted,
but the mistaken priorities that inspired them.

 Journal publishers sometimes claim that online access requires expensive
high-powered server machines, and that they must charge access fees to pay for
these servers. This “problem” is a consequence of its own “solution.” Give everyone
the freedom to mirror, and libraries around the world will set up mirror sites to
meet the demand. This decentralized solution will reduce network bandwidth needs
and provide faster access, all the while protecting the scholarly record against
accidental loss.

 Publishers also argue that paying the editors requires charging for access.
Let us accept the assumption that editors must be paid; this tail need not
wag the dog. The cost of editing for a typical paper is between 1 percent
and 3 percent of the cost of funding the research to produce it. Such a
small percentage of the cost can hardly justify obstructing the use of the
results.

 Instead, the cost of editing could be recovered, for example, through page
charges to the authors, who can pass these on to the research sponsors. The
sponsors should not mind, given that they currently pay for publication in a more
cumbersome way, through overhead fees for the university library’s subscription to
the journal. By changing the economic model to charge editing costs to the research
sponsors, we can eliminate the apparent need to restrict access. The occasional
author who is not affiliated with an institution or company, and who has no
research sponsor, could be exempted from page charges, with costs levied on
institution-based authors.

 Another justification for access fees to online publications is to fund conversion
of the print archives of a journal into online form. That work needs to be done, but
we should seek alternative ways of funding it that do not involve obstructing access
to the result. The work itself will not be any more difficult, or cost any more. It is
self-defeating to digitize the archives and waste the results by restricting
access.

 The US Constitution says that copyright exists “to promote the Progress of
Science.” When copyright impedes the progress of science, science must push
copyright out of the way.

 Later Developments

 Some universities—MIT for instance [1] —have adopted policies to thwart the
journal publishers’ power. Stronger policies are needed, however, as ones like MIT’s
permit individual authors to “opt out” (i.e., cave in).

 The US government has imposed a requirement known as “public access” on

some funded research. This requires publication within a certain period in a site
that allows anyone to view the article. This requirement is a positive step,
but inadequate because it does not include freedom to redistribute the
article.

 Curiously, the concept of “open access” in the 2002 Budapest Open Access
Initiative did include freedom to redistribute. I signed that declaration, despite my
distaste for the word “open,” because the substance of the position was
right.

 However, the word “open” had the last laugh: influential campaigners for “open
access” subsequently dropped freedom to redistribute from their goals. I
stand by the position of the BOAI, [2] but now that “open access” means
something else, I refer to it as “redistributable publication” or “free-to-mirror
publication.”

 Endnotes

 [1] “MIT Faculty Open Access Policy,” adopted by unanimous faculty vote on 18 March 2009,
http://libraries.mit.edu/scholarly/mit-open-access/open-access-at-mit/mit-open-access-policy/.

 [2] See http://www.budapestopenaccessinitiative.org/ for the BOAI guidelines.

 Chapter 21
Copyright vs. Communityin the Age of Computer Networks

Copyright © 2009 Free Software Foundation, Inc.
 Thank you to Bookman for the original transcript. This version of it is part of Free Software,
Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 This is a transcript of the keynote speech presented by Richard Stallman, on
 12 October 2009, at the LIANZA conference, at the Christchurch Convention
 Centre, in Christchurch, New Zealand.

 Brenda Chawner: Tena koutou, tena koutou, tena koutou katoa. Today
 I have the privilege of introducing Richard Stallman, whose keynote speech
 is being sponsored by the School of Information Management at Victoria
 University of Wellington.

 Richard has been working to promote software freedom for over 25 years.
 In 1983 he started the GNU Project to develop a free operating system [the
 GNU system], and in 1985 he set up the Free Software Foundation. Every time
 you read or send a message to nz-libs, you use the Mailman software which is
 part of the GNU Project. So whether you realize it or not, Richard’s work has
 touched all of your lives.

 I like to describe him as the most influential person most people have never
 heard of, although he tells me that that cannot possibly be true because it
 cannot be tested.

RMS: We can’t tell.

BC: I said that—I still like it. His ideas about software freedom and free access
 to information were used by Tim Berners-Lee when he created the world’s first
 web server, and in 1999 his musings about a free online encyclopedia inspired
 Jimmy Wales to set up what is now Wikipedia.

 Today Richard will be talking to us about copyright vs. community in the
 age of computer networks, and their implications for libraries. Richard.

RMS: I’ve been in New Zealand for a couple of weeks, and in the North
 Island it was raining most of the time. Now I know why they call gumboots
 “Wellingtons.” And then I saw somebody who was making chairs and tables
 out of ponga wood, and he called it fern-iture. Then we took the ferry to get
 here, and as soon as we got off, people started mocking and insulting us; but
 there were no hard feelings, they just wanted to make us really feel Picton.

The reason people usually invite me to give speeches is because of my work on free
software. This is not a talk about free software; this talk answers the question
whether the ideas of free software extend to other kinds of works. But in
order for that to make sense, I’d better tell you briefly what free software
means.

 Free software is a matter of freedom, not price, so think of “free speech,” not

“free beer.” Free software is software that respects the user’s freedom, and there are
four specific freedoms that the user deserves always to have:

 	Freedom 0 is the freedom to run the program as you wish.

 	Freedom 1 is the freedom to study the source code of the program and
 change it to make the program do what you wish.

 	Freedom 2 is the freedom to help your neighbor—that is, the freedom to
 redistribute copies of the program, exact copies when you wish.

 	And freedom 3 is the freedom to contribute to your community. That’s
 the freedom to publish your modified versions when you wish.

 If the program gives you these four freedoms then it’s free software, which means
the social system of its distribution and use is an ethical system, one which respects
the user’s freedom and the social solidarity of the user’s community. But if one of
these freedoms is missing or insufficient, then it’s proprietary software, nonfree
software, user-subjugating software. It’s unethical. It’s not a contribution to society.
It’s a power grab. This unethical practice should not exist; the goal of the free
software movement is to put an end to it. All software should be free, so that all
users can be free.

 Proprietary software keeps the users divided and helpless: divided, because
they’re forbidden to share it, and helpless, because they don’t have the source code
so they can’t change it. They can’t even study it to verify what it’s really
doing to them, and many proprietary programs have malicious features
which spy on the user, restrict the user, even back doors to attack the
user.

 For instance, Microsoft Windows has a back door with which Microsoft can
forcibly install software changes, without getting permission from the supposed
owner of the computer. You may think it’s your computer, but if you’ve made
the mistake of having Windows running in it, then really Microsoft has
owned your computer. Computers need to be defenestrated, which means
either throw Windows out of the computer, or throw the computer out the
window.

 But any proprietary software gives the developers unjust power over the users.
Some of the developers abuse this power more, and some abuse it less, but none of
them ought to have it. You deserve to have control of your computing, and
not be forcibly dependent on a particular company. So you deserve free
software.

 At the end of speeches about free software, people sometimes ask whether
these same freedoms and ideas apply to other things. If you have a copy of
a published work on your computer, it makes sense to ask whether you
should have the same four freedoms—whether it’s ethically essential that

you have them or not. And that’s the question that I’m going to address
today.

 If you have a copy of something that’s not software, for the most part, the only
thing that might deny you any of these freedoms is copyright law. With software
that’s not so. The main ways of making software nonfree are contracts and
withholding the source code from the users. Copyright is a sort of secondary, back
up method. For other things there’s no such distinction as between source code and
executable code.

 For instance, if we’re talking about a text, if you can see the text to read it,
there’s nothing in the text that you can’t see. So it’s not the same kind of issue
exactly as software. It’s for the most part only copyright that might deny you these
freedoms.

 So the question can be restated: “What should copyright law allow you to do
with published works? What should copyright law say?”

 Copyright has developed along with copying technology, so it’s useful to review
the history of copying technology. Copying developed in the ancient world, where
you’d use a writing instrument on a writing surface. You’d read one copy and write
another.

 This technology was rather inefficient, but another interesting characteristic was
that it had no economy of scale. To write ten copies would take ten times as
long as to write one copy. It required no special equipment other than the
equipment for writing, and it required no special skill other than literacy
itself. The result was that copies of any particular book were made in a
decentralized manner. Wherever there was a copy, if someone wanted to copy it, he
could.

 There was nothing like copyright in the ancient world. If you had a copy and
wanted to copy it, nobody was going to tell you you weren’t allowed—except if the
local prince didn’t like what the book said, in which case he might punish you for
copying it. But that’s not copyright, but rather something closely related,
namely censorship. To this day, copyright is often used in attempts to censor
people.

 That went on for thousands of years, but then there was a big advance in
copying technology, namely the printing press. The printing press made copying
more efficient, but not uniformly. [This was] because mass production copying
became a lot more efficient, but making one copy at a time didn’t benefit from the
printing press. In fact, you were better off just writing it by hand; that would be
faster than trying to print one copy.

 The printing press has an economy of scale: it takes a lot of work to set the type,
but then you can make many copies very fast. Also, the printing press
and the type were expensive equipment that most people didn’t own; and
the ability to use them, most literate people didn’t know. Using a press
was a different skill from writing. The result was a centralized manner of
producing copies: the copies of any given book would be made in a few places,
and then they would be transported to wherever someone wanted to buy
copies.

 Copyright began in the age of the printing press. Copyright in England

began as a system of censorship in the 1500s. I believe it was originally
meant to censor Protestants, but it was turned around and used to censor
Catholics and presumably lots of others as well. According to this law, in order
to publish a book you had to get permission from the Crown, and this
permission was granted in the form of a perpetual monopoly to publish it. This
was allowed to lapse in the 1680s, I believe [it expired in 1695 according
to the Wikipedia entry]. The publishers wanted it back again, but what
they got was something somewhat different. The Statute of Anne gave
authors a copyright, and only for 14 years, although the author could renew it
once.

 This was a totally different idea—a temporary monopoly for the author, instead
of a perpetual monopoly for the publisher. The idea developed that copyright was a
means of promoting writing.

 When the US constitution was written, some people wanted authors to be
entitled to a copyright, but that was rejected. Instead, the US Constitution says
that Congress can optionally adopt a copyright law, and if there is a copyright law,
its purpose is to promote progress. In other words, the purpose is not benefits for
copyright holders or anybody they do business with, but for the general public.
Copyright has to last a limited time; publishers keep hoping for us to forget about
this.

 Here we have an idea of copyright which is an industrial regulation
on publishers, controlled by authors, and designed to provide benefits to
the public at large. It functioned this way because it didn’t restrict the
readers.

 Now in the early centuries of printing, and still I believe in the 1790s, lots of
readers wrote copies by hand because they couldn’t afford printed copies. Nobody
ever expected copyright law to be something other than an industrial regulation. It
wasn’t meant to stop people from writing copies, it was meant to regulate the
publishers. Because of this it was easy to enforce, uncontroversial, and arguably
beneficial for society.

 It was easy to enforce, because it only had to be enforced against publishers.
And it’s easy to find the unauthorized publishers of a book—you go to a bookstore
and say, “Where do these copies come from?” You don’t have to invade everybody’s
home and everybody’s computer to do that.

 It was uncontroversial because, as the readers were not restricted, they
had nothing to complain about. Theoretically they were restricted from
publishing, but not being publishers and not having printing presses, they
couldn’t do that anyway. In what they actually could do, they were not
restricted.

 It was arguably beneficial because the general public, according to the concepts
of copyright law, traded away a theoretical right they were not in a position to
exercise. In exchange, they got the benefits of more writing.

 Now if you trade away something you have no possible use for, and you get
something you can use in exchange, it’s a positive trade. Whether or not you could
have gotten a better deal some other way, that’s a different question, but at least
it’s positive.

 So if this were still in the age of the printing press, I don’t think I’d be
complaining about copyright law. But the age of the printing press is gradually
giving way to the age of the computer networks—another advance in copying
technology that makes copying more efficient, and once again not uniformly
so.

 Here’s what we had in the age of the printing press: mass production very
efficient, one at a time copying still just as slow as the ancient world. Digital
technology gets us here: they’ve both benefited, but one-off copying has benefited
the most.

 We get to a situation much more like the ancient world, where one at a time
copying is not so much worse [i.e., harder] than mass production copying. It’s a
little bit less efficient, a little bit less good, but it’s perfectly cheap enough that
hundreds of millions of people do it. Consider how many people write CDs once in a
while, even in poor countries. You may not have a CD-writer yourself, so you go to
a store where you can do it.

 This means that copyright no longer fits in with the technology as it used to.
Even if the words of copyright law had not changed, they wouldn’t have the same
effect. Instead of an industrial regulation on publishers controlled by authors,
with the benefits set up to go to the public, it is now a restriction on the
general public, controlled mainly by the publishers, in the name of the
authors.

 In other words, it’s tyranny. It’s intolerable and we can’t allow it to continue this
way.

 As a result of this change, [copyright] is no longer easy to enforce, no longer
uncontroversial, and no longer beneficial.

 It’s no longer easy to enforce because now the publishers want to enforce it
against each and every person, and to do this requires cruel measures, draconian
punishments, invasions of privacy, abolition of our basic ideas of justice. There’s
almost no limit to how far they will propose to go to prosecute the War on
Sharing.

 It’s no longer uncontroversial. There are political parties in several countries
whose basic platform is “freedom to share.”

 It’s no longer beneficial because the freedoms that we conceptually traded away
(because we couldn’t exercise them), we now can exercise. They’re tremendously
useful, and we want to exercise them.

 What would a democratic government do in this situation?

 It would reduce copyright power. It would say: “The trade we made on behalf of
our citizens, trading away some of their freedom which now they need, is
intolerable. We have to change this; we can’t trade away the freedom that is
important.” We can measure the sickness of democracy by the tendency of
governments to do the exact opposite around the world, extending copyright power
when they should reduce it.

 One example is in the dimension of time. Around the world we see pressure to
make copyright last longer and longer and longer.

 A wave of this started in the US in 1998. Copyright was extended by 20 years on
both past and future works. I do not understand how they hope to convince the now

dead or senile writers of the 20s and 30s to write more back then by extending
copyright on their works now. If they have a time machine with which to inform
them, they haven’t used it. Our history books don’t say that there was a burst of
vigor in the arts in the 20s when all the artists found out that their copyrights
would be extended in 1998.

 It’s theoretically conceivable that 20 years more copyright on future works would
convince people to make more effort in producing those works. But not anyone
rational, because the discounted present value of 20 more years of copyright starting
75 years in the future—if it’s a work made for hire—and probably even longer if it’s
a work with an individual copyright holder, is so small it couldn’t persuade any
rational person to do anything different. Any business that wants to claim otherwise
ought to present its projected balance sheets for 75 years in the future,
which of course they can’t do because none of them really looks that far
ahead.

 The real reason for this law, the desire that prompted various companies to
purchase this law in the US Congress, which is how laws are decided on for the most
part, was they had lucrative monopolies and they wanted those monopolies to
continue.

 For instance, Disney was aware that the first film in which Mickey Mouse
appeared would go into the public domain in a few years, and then anybody would
be free to draw that same character as part of other works. Disney didn’t want that
to happen. Disney borrows a lot from the public domain, but is determined never to
give the slightest thing back. So Disney paid for this law, which we refer to as the
Mickey Mouse Copyright Act.

 The movie companies say they want perpetual copyright, but the US
Constitution won’t let them get that officially. So they came up with a way to get
the same result unofficially: “perpetual copyright on the installment plan.”
Every 20 years they extend copyright for 20 more years. So that at any
given time, any given work has a date when it will supposedly fall into
the public domain. But that date is like tomorrow, it never comes. By the
time you get there they will have postponed it, unless we stop them next
time.

 That’s one dimension, the dimension of duration. But even more important is
the dimension of breadth: which uses of the work does copyright cover?

 In the age of the printing press, copyright wasn’t supposed to cover
all uses of a copyrighted work, because copyright regulated certain uses
that were the exceptions in a broader space of unregulated uses. There
were certain things you were simply allowed to do with your copy of a
book.

 Now the publishers have got the idea that they can turn our computers against
us, and use them to seize total power over all use of published works. They want
to set up a pay-per-view universe. They’re doing it with DRM (Digital
Restrictions Management)—the intentional features of software that’s designed to
restrict the user. And often the computer itself is designed to restrict the
user.

 The first way in which the general public saw this was in DVDs. A movie

on a DVD was usually encrypted, and the format was secret. The DVD
conspiracy kept this secret because they said anyone that wants to make DVD
players has to join the conspiracy, promise to keep the format secret, and
promise to design the DVD players to restrict the users according to the rules,
which say it has to stop the user from doing this, from doing that, from
doing that—a precise set of requirements, all of which are malicious towards
us.

 It worked for a while, but then some people figured out the secret format, and
published free software capable of reading the movie on a DVD and playing it. Then
the publishers said, “Since we can’t actually stop them, we have to make it a
crime.” And they started that in the US in 1998 with the Digital Millennium
Copyright Act, which imposed censorship on software capable of doing such
jobs.

 So that particular piece of free software was the subject of a court case. Its
distribution in the US is forbidden; the US practices censorship of software.

 The movie companies are well aware that they can’t really make that program
disappear—it’s easy enough to find it. So they designed another encryption system,
which they hoped would be harder to break, and it’s called AACS, or the
axe.

 The AACS conspiracy makes precise rules about all players. For instance, in
2011 it’s going to be forbidden to make analog video outputs. So all video outputs
will have to be digital, and they will carry the signal encrypted into a monitor
specially designed to keep secrets from the user. That is malicious hardware. They
say that the purpose of this is to “close the analog hole.” [Stallman takes off
his glasses.] Here’s one and here’s another, that they’d like to poke out
permanently. [1]

 How do I know about these conspiracies? The reason is they’re not secret—they
have web sites. The AACS web site proudly describes the contracts that
manufacturers have to sign, which is how I know about this requirement. It proudly
states the names of the companies that have established this conspiracy,
which include Microsoft and Apple, and Intel, and Sony, and Disney, and
IBM.

 A conspiracy of companies designed to restrict the public’s access to technology
ought to be prosecuted as a serious crime, like a conspiracy to fix prices, except it’s
worse, so the prison sentences for this should be longer. But these companies are
quite confident that our governments are on their side against us. They have no fear
against being prosecuted for these conspiracies, which is why they don’t bother to
hide them.

 In general, DRM is set up by a conspiracy of companies. Once in a
while a single company can do it, but generally it requires a conspiracy
between technology companies and publishers, so [it’s] almost always a
conspiracy.

 They thought that nobody would ever be able to break the AACS, but about
three and a half years ago someone released a free program capable of decrypting
that format. However, it was totally useless, because in order to run it you need to
know the key.

 And then, six months later, I saw a photo of two adorable puppies, with 32 hex
digits above them, and I wondered, “Why put those two things together? I wonder if
those numbers are some important key, and someone could have put the numbers
together with the puppies, figuring people would copy the photo of the puppies
because they were so cute. This would protect the key from being wiped
out.”

 And that’s what it was—that was the key to break the axe. People posted it,
and editors deleted it, because laws in many countries now conscript them to
censor this information. It was posted again, they deleted it; eventually they
gave up, and in two weeks this number was posted in over 700,000 web
sites.

 That’s a big outpouring of public disgust with DRM. But it didn’t win the war,
because the publishers changed the key. Not only that: with HD DVD, this was
adequate to break the DRM, but not with Blu-ray. Blu-ray has an additional level
of DRM and so far there is no free software that can break it, which means that you
must regard Blu-ray disks as something incompatible with your own freedom. They
are an enemy with which no accommodation is possible, at least not with our
present level of knowledge.

 Never accept any product designed to attack your freedom. If you don’t have the
free software to play a DVD, you mustn’t buy or rent any DVDs, or accept them
even as gifts, except for the rare non-encrypted DVDs, which there are a few of. I
actually have a few [of these]—I don’t have any encrypted DVDs, I won’t take
them.

 So this is how things stand in video, but we’ve also seen DRM in music.

 For instance, about ten years ago we started to see things that looked like
compact disks, but they weren’t written quite like compact disks. They didn’t follow
the standard. We called them “corrupt disks,” and the idea of them was that they
would play in an audio player, but it was impossible to read them on a computer.
These different methods had various problems.

 Eventually Sony came up with a clever idea. They put a program on the disk, so
that if you stuck the disk into a computer, the disk would install the program. This
program was designed like a virus to take control of the system. It’s called a “root
kit,” meaning that it has things in it to break the security of the system so that it
can install the software deep inside the system, and modify various parts of the
system.

 For instance, it modified the command you could use to examine the system to
see if the software was present, so as to disguise itself. It modified the command you
could use to delete some of these files, so that it wouldn’t really delete them. Now
all of this is a serious crime, but it’s not the only one Sony committed, because the
software also included free software code—code that had been released under the
GNU General Public License.

 Now the GNU GPL is a copyleft license, and that means it says, “Yes, you’re
free to put this code into other things, but when you do, the entire program that
you put things into you must release as free software under the same license. And
you must make the source code available to users, and to inform them of
their rights you must give them a copy of this license when they get the

software.”

 Sony didn’t comply with all that. That’s commercial copyright infringement,
which is a felony. They’re both felonies, but Sony wasn’t prosecuted because the
government understands that the purpose of the government and the law is to
maintain the power of those companies over us, not to help defend our freedom in
any way.

 People got angry and they sued Sony. However, they made a mistake. They
focused their condemnation not on the evil purpose of this scheme, but only on the
secondary evils of the various methods that Sony used. So Sony settled the lawsuits
and promised that in the future, when it attacks our freedom, it will not do those
other things.

 Actually, that particular corrupt disk scheme was not so bad, because if you
were not using Windows it would not affect you at all. Even if you were using
Windows, there’s a key on the keyboard—if you remembered every time to hold it
down, then the disk wouldn’t install the software. But of course it’s hard to
remember that every time; you’re going to slip up some day. This shows the kind of
thing we’ve had to deal with.

 Fortunately music DRM is receding. Even the main record companies sell
downloads without DRM. But we see a renewed effort to impose DRM on
books.

 You see, the publishers want to take away the traditional freedoms of
book readers—freedom to do things such as borrow a book from the public
library, or lend it to a friend; to sell a book to a used book store, or buy it
anonymously paying cash (which is the only way I buy books—we’ve got
to resist the temptations to let Big Brother know everything that we’re
doing.)

 Even the freedom to keep the book as long as you wish, and read it as many
times as you wish, they plan to get rid of.

 The way they do it is with DRM. They knew that so many people read books
and would get angry if these freedoms were taken away that they didn’t believe they
could buy a law specifically to abolish these freedoms—there would be too much
opposition. Democracy is sick, but once in a while people manage to demand
something. So they came up with a two-stage plan.

 First, take away these freedoms from e-books, and second, convince
people to switch from paper books to e-books. They’ve succeeded with stage
1.

 In the US they did it with the Digital Millennium Copyright Act, and in New
Zealand, that was part of the Copyright Act [of 2008]; censorship on software that
can break DRM was part of that law. That’s an unjust provision; it’s got to be
repealed.

 The second stage is convince people to switch from printed books to e-books;
that didn’t go so well.

 One publisher in 2001 had the idea they would make their line of e-books really
popular if they started it with my biography. So they found an author and the
author asked me if I’d cooperate, and I said, “Only if this e-book is published
without encryption, without DRM.” The publisher wouldn’t go along with that, and

I just stuck to it—I said no. Eventually we found another publisher who was willing
to do this—in fact willing to publish the book under a free license giving you the
four freedoms—so the book was then published, and sold a lot of copies on
paper.

 But in any case, e-books failed at the beginning of this decade. People just
didn’t want to read them very much. And I said, “They will try again.”
We saw an amazing number of news articles about electronic ink (or is
it electronic paper, I can never remember which), and it occurred to me
probably the reason there’s so many is the publishers want us to think
about this. They want us to be eager for the next generation of e-book
readers.

 Now they’re upon us. Things like the Sony Shreader (its official name is the
Sony Reader, but if you put on ‘sh’ it explains what it’s designed to do to your
books), and the Amazon Swindle, designed to swindle you out of your traditional
freedoms without your noticing. Of course, they call it the Kindle which is what it’s
going to do to your books.

 The Kindle is an extremely malicious product, almost as malicious as Microsoft
Windows. They both have spy features, they both have Digital Restrictions
Management, and they both have back doors.

 In the case of the Kindle, the only way you can buy a book is to buy it from
Amazon, and Amazon requires you to identify yourself, so they know everything
that you’ve bought.

 Then there is Digital Restrictions Management, so you can’t lend the book or
sell it to a used bookstore, and the library can’t lend it either.

 And then there’s the back door, which we found out about about three months
ago, because Amazon used it. Amazon sent a command to all the Kindles to erase a
particular book, namely 1984, by George Orwell. Yes, they couldn’t have picked a
more ironic book to erase. So that’s how we know that Amazon has a back door
with which it can erase books remotely.

 What else it can do, who knows? Maybe it’s like Microsoft Windows. Maybe
Amazon can remotely upgrade the software, which means that whatever malicious
things are not in it now, they could put them in it tomorrow.

 This is intolerable—any one of these restrictions is intolerable. They want to
create a world where nobody lends books to anybody anymore.

 Imagine that you visit a friend and there are no books on the shelf. It’s not that
your friend doesn’t read, but his books are all inside a device, and of course he
can’t lend you those books. The only way he could lend you any one of
those books is to lend you his whole library, which is obviously a ridiculous
thing to ask anybody to do. So there goes friendship for people who love
books.

 Make sure that you inform people what this device implies. It means other
readers will no longer be your friends, because you will be acting like a jerk toward
them. Spread the word preemptively. This device is your enemy. It’s the enemy of
everyone who reads. The people who don’t recognize that are the people
who are thinking so short-term that they don’t see it. It’s our job to help
them see beyond the momentary convenience to the implications of this

device.

 I have nothing against distributing books in digital form, if they are not
designed to take away our freedom. Strictly speaking, it is possible to have an
e-book reader:

 	that is not designed to attack you,

 	which runs free software and not proprietary software,

 	which doesn’t have DRM,

 	which doesn’t make people identify yourself to get a book,

 	which doesn’t have a back door, [and]

 	which doesn’t restrict what you can do with the files on your machine.

 It’s possible, but the big companies really pushing e-books are doing it to attack
our freedom, and we mustn’t stand for that. This is what governments are doing in
cahoots with big business to attack our freedom, by making copyright harsher and
nastier, more restrictive than ever before.

 But what should they do? Governments should make copyright power less. Here
are my specific proposals.

 First of all, there is the dimension of time. I propose copyright should last ten
years, starting from the date of publication of a work.

 Why from the date of publication? Because before that, we don’t have
copies. It doesn’t matter to us whether we would have been allowed to copy
our copies that we don’t have, so I figure we might as well let the authors
have as much time as it takes to arrange publication, and then start the
clock.

 But why ten years? I don’t know about in this country, but in the US, the
publication cycle has got shorter and shorter. Nowadays almost all books are
remaindered within two years and out-of-print within three. So ten years is
more than three times the usual publication cycle—that should be plenty
comfortable.

 But not everybody agrees. I once proposed this in a panel discussion with fiction
writers, and the award-winning fantasy writer next to me said, “Ten years? No way.
Anything more than five years is intolerable.” You see, he had a legal dispute with
his publisher. His books seemed to be out of print, but the publisher wouldn’t admit
it. The publisher was using the copyright on his own book to stop him from
distributing copies himself, which he wanted to do so people could read
it.

 This is what every artist starts out wanting—wanting to distribute her work so
it will get read and appreciated. Very few make a lot of money. That tiny fraction
face the danger of being morally corrupted, like JK Rowling.

 JK Rowling, in Canada, got an injunction against people who had bought her
book in a bookstore, ordering them not to read it. So in response I call for a
boycott of Harry Potter books. But I don’t say you shouldn’t read them; I
leave that to the author and the publisher. I just say you shouldn’t buy
them.

 It’s few authors that make enough money that they can be corrupted in this
way. Most of them don’t get anywhere near that, and continue wanting the same
thing they wanted at the outset: they want their work to be appreciated.

 He wanted to distribute his own book, and copyright was stopping him. He
realized that more than five years of copyright was unlikely to ever do him any
good.

 If people would rather have copyright last five years, I won’t be against it. I
propose ten as a first stab at the problem. Let’s reduce it to ten years and then take
stock for a while, and we could adjust it after that. I don’t say I think ten years is
the exact right number—I don’t know.

 What about the dimension of breadth? Which activities should copyright cover?
I distinguish three broad categories of works.

 First of all, there are the functional works that you use to do a practical job
in your life. This includes software, recipes, educational works, reference
works, text fonts, and other things you can think of. These works should be
free.

 If you use the work to do a job in your life, then if you can’t change the
work to suit you, you don’t control your life. Once you have changed the
work to suit you, then you’ve got to be free to publish it—publish your
version—because there will be others who will want the changes you’ve
made.

 This leads quickly to the conclusion that users have to have the same four
freedoms [for all functional works], not just for software. And you’ll notice that for
recipes, practically speaking, cooks are always sharing and changing recipes just as
if the recipes were free. Imagine how people would react if the government tried to
stamp out so-called recipe piracy.

 The term “pirate” is pure propaganda. When people ask me what I think of
music piracy, I say, “As far as I know, when pirates attack they don’t do it by
playing instruments badly, they do it with arms. So it’s not music ‘piracy,’ because
piracy is attacking ships, and sharing is as far as you get from being the moral
equivalent of attacking ships.” Attacking ships is bad, sharing with other people is
good, so we should firmly denounce that propaganda term “piracy” whenever we
hear it.

 People might have objected twenty years ago: “If we don’t give up our freedom,
if we don’t let the publishers of these works control us, the works won’t get made
and that will be a horrible disaster.” Now, looking at the free software community,
and all the recipes that circulate, and reference works like Wikipedia—we are even
starting to see free textbooks being published—we know that that fear is

misguided.

 There is no need to despair and give up our freedom thinking that otherwise the
works won’t get made. There are lots of ways to encourage them to get made if we
want more—lots of ways that are consistent with and respect our freedom. In this
category, they should all be free.

 But what about the second category, of works that say what certain people
thought, like memoirs, essays of opinion, scientific papers, [2] and various other
things? To publish a modified version of somebody else’s statement of what he
thought is misrepresenting [that] somebody. That’s not particularly a contribution
to society.

 Therefore it is workable and acceptable to have a somewhat reduced copyright
system where all commercial use is covered by copyright, all modification is covered
by copyright, but everyone is free to non-commercially redistribute exact
copies.

 That freedom is the minimum freedom we must establish for all published works,
because the denial of that freedom is what creates the War on Sharing—what
creates the vicious propaganda that sharing is theft, that sharing is like
being a pirate and attacking ships. Absurdities, but absurdities backed by a
lot of money that has corrupted our governments. We need to end the
War on Sharing; we need to legalize sharing exact copies of any published
work.

 In the second category of works, that’s all we need; we don’t need to make them
free. Therefore I think it’s OK to have a reduced copyright system which covers
commercial use and all modifications. And this will provide a revenue stream to the
authors in more or less the same (usually inadequate) way as the present system.
You’ve got to keep in mind [that] the present system, except for superstars, is
usually totally inadequate.

 What about works of art and entertainment? Here it took me a while to decide
what to think about modifications.

 You see, on one hand, a work of art can have an artistic integrity and modifying
it could destroy that. Of course, copyright doesn’t necessarily stop works
from being butchered that way. Hollywood does it all the time. On the
other hand, modifying the work can be a contribution to art. It makes
possible the folk process which leads to things which are beautiful and
rich.

 Even if we look at named authors only: consider Shakespeare, who borrowed
stories from other works only a few decades old, and did them in different ways, and
made important works of literature. If today’s copyright law had existed
then, that would have been forbidden and those plays wouldn’t have been
written.

 But eventually I realized that modifying a work of art can be a contribution to
art, but it’s not desperately urgent in most cases. If you had to wait ten
years for the copyright to expire, you could wait that long. Not like the
present-day copyright that makes you wait maybe 75 years, or 95 years. In
Mexico you might have to wait almost 200 years in some cases, because
copyright in Mexico expires a hundred years after the author dies. This is

insane, but ten years, as I’ve proposed copyright should last, that people can
wait.

 So I propose the same partly reduced copyright that covers commercial use and
modification, but everyone’s got to be free to non-commercially redistribute exact
copies. After ten years it goes into the public domain, and people can contribute to
art by publishing their modified versions.

 One other thing: if you’re going to take little pieces out of a bunch of works and
rearrange them into something totally different, that should just be legal, because
the purpose of copyright is to promote art, not to obstruct art. It’s stupid to apply
copyright to using snippets like that—it’s self-defeating. It’s a kind of distortion
that you’d only get when the government is under the control of the publishers
of the existing successful works, and has totally lost sight of its intended
purpose.

 That’s what I propose, and in particular, this means that sharing copies on the
internet must be legal. Sharing is good. Sharing builds the bonds of society. To
attack sharing is to attack society.

 So any time the government proposes some new means to attack people who
share, to stop them from sharing, we have to recognize that this is evil, not just
because the means proposed almost invariably offend basic ideas of justice. But
that’s not a coincidence; the reason is because the purpose is evil. Sharing is good
and the government should encourage sharing.

 But copyright did after all have a useful purpose. Copyright as a means to carry
out that purpose has a problem now, because it doesn’t fit in with the technology
we use. It interferes with all the vital freedoms for all the readers, listeners, viewers,
and whatever, but the goal of promoting the arts is still desirable. So in addition to
the partly reduced copyright system, which would continue to be a copyright
system, I propose two other methods.

 One [works via] taxes—distribute tax money directly to artists. This could be a
special tax, perhaps on internet connectivity, or it could come from general revenue,
because it won’t be that much money in total, not if it’s distributed in an efficient
way. To distribute it efficiently to promote the arts means not in linear
proportion to popularity. It should be based on popularity, because we
don’t want bureaucrats to have the discretion to decide which artists to
support and which to ignore, but based on popularity does not imply linear
proportion.

 What I propose is measure the popularity of the various artists, which you could
do through polling (samples) in which nobody is required to participate, and then
take the cube root. The cube root looks like this: it means basically that [the
payment] tapers off after a while.

 If superstar A is a thousand times as popular as successful artist B, with
this system A would get ten times as much money as B, not a thousand
times.

 Linearly would give A a thousand times as much as B, which means that
if we wanted B to get enough to live on we’re going to have to make A
tremendously rich. This is wasteful use of the tax money—it shouldn’t be
done.

 But if we make it taper off, then yes, each superstar will get handsomely more
than an ordinary successful artist, but the total of all the superstars will be a small
fraction of the [total] money. Most of the money will go to support a large number
of fairly successful artists, fairly appreciated artists, fairly popular artists.
Thus the system will use money a lot more efficiently than the existing
system.

 The existing system is regressive. It actually gives far, far more per record, for
instance, to a superstar than to anybody else. The money is extremely
badly used. The result is we’d actually be paying a lot less this way. I hope
that’s enough to mollify some of these people who have a knee-jerk hostile
reaction to taxes—one that I don’t share, because I believe in a welfare
state.

 I have another suggestion which is voluntary payments. Suppose every player
had a button you could push to send a dollar to the artist who made the work
you’re currently playing or the last one you played. This money would be delivered
anonymously to those artists. I think a lot of people would push that button fairly
often.

 For instance, all of us could afford to push that button once every day, and we
wouldn’t miss that much money. It’s not that much money for us, I’m pretty sure.
Of course, there are poor people who couldn’t afford to push it ever, and it’s OK if
they don’t. We don’t need to squeeze money out of poor people to support the
artists. There are enough people who are not poor to do the job just fine. I’m sure
you’re aware that a lot of people really love certain art and are really happy to
support the artists.

 An idea just came to me. The player could also give you a certificate of
having supported so-and-so, and it could even count up how many times you
had done it and give you a certificate that says, “I sent so much to these
artists.” There are various ways we could encourage people who want to do
it.

 For instance, we could have a PR campaign which is friendly and kind: “Have
you sent a dollar to some artists today? Why not? It’s only a dollar—you’ll never
miss it and don’t you love what they’re doing? Push the button!” It will make
people feel good, and they’ll think, “Yeah, I love what I just watched. I’ll send a
dollar.”

 This is already starting to work to some extent. There’s a Canadian singer who
used to be called Jane Siberry. She put her music on her web site and invited
people to download it and pay whatever amount they wished. She reported
getting an average of more than a dollar per copy, which is interesting
because the major record companies charge just under a dollar per copy. By
letting people decide whether and how much to pay, she got more—she
got even more per visitor who was actually downloading something. But
this might not even count whether there was an effect of bringing more
people to come, and [thus] increasing the total number that this average was
against.

 So it can work, but it’s a pain in the neck under present circumstances. You’ve
got to have a credit card to do it, and that means you can’t do it anonymously. And

you’ve got to go find where you’re going to pay, and the payment systems for small
amounts, they’re not very efficient, so the artists are only getting half of it. If we set
up a good system for this, it would work far, far better. So these are my two
suggestions.

 And in mecenat-global.org, [3] you can find another scheme that combines
aspects of the two, which was invented by Francis Muguet and designed to fit in
with existing legal systems better to make it easier to enact.

 Be careful of proposals to “compensate the rights holders,” because
when they say “compensate,” they’re trying to presume that if you have
appreciated a work, you now have a specific debt to somebody, and that you
have to “compensate” that somebody. When they say “rights holders,” it’s
supposed to make you think it’s supporting artists while in fact it’s going to
the publishers—the same publishers who basically exploit all the artists
(except the few that you’ve all heard of, who are so popular that they have
clout).

 We don’t owe a debt; we have nobody that we have to “compensate.” [But]
supporting the arts is still a useful thing to do. That was the motivation for
copyright back when copyright fit in with the technology of the day. Today
copyright is a bad way to do it, but it’s still good to do it other ways that respect
our freedom.

 Demand that they change the two evil parts of the New Zealand Copyright Act.
They shouldn’t replace the three strikes punishment, [4] because sharing is good, and
they’ve got to get rid of the censorship for the software to break DRM. Beware of
ACTA—they’re trying to negotiate a treaty between various countries, for all of
these countries to attack their citizens, and we don’t know how because they won’t
tell us.

 Endnotes

 [1] In 2010, the encryption system for digital video output was definitively cracked.
(See Mark Hachman’s “HDCP Master Key Confirmed; Blu-Ray Content Vulnerable”
(September 16 2010), at http://pcmag.com/article2/0,2817,2369280,00.asp, for more
information.)

 [2] 2015: I included scientific papers because I thought that publishing modified versions of
someone else’s paper would cause harm; however, publishing physics and math papers under
the Creative Commons Attribution License on arXiv.org and many libre journals seems to
have no problems. Thus, I subsequently concluded that scientific papers ought to be free.

 [3] That page is no longer active; please see
https://stallman.org/mecenat/global-patronage.html instead.

 [4] New Zealand had enacted a system of punishment without trial for internet users
accused of copying; then, facing popular protest, the government did not implement it, and
announced a plan to implement a modified unjust punishment system. The point here was
that they should not proceed to implement a replacement—rather, they should have no such
system. However, the words I used don’t say this clearly.

 The New Zealand government subsequently implemented the punishment scheme more
or less as originally planned.

 Part IV
Part IV: Software Patents: Danger to Programmers

 22 Software Patents and Literary Patents

 23 The Danger of Software Patents

 24 Giving the Software Field Protection from Patents

 Chapter 22
Software Patents and Literary Patents

 Copyright © 2005, 2007, 2008 Richard Stallman
 This essay was originally published on http://guardian.co.uk, on 23 June 2005. It was then
titled “Patent Absurdity” and focused on the proposed European software patent directive. This
version is part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed.
(Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

When
politicians consider the question of software patents, they are usually voting blind;
not being programmers, they don’t understand what software patents really do.
They often think patents are similar to copyright law (“except for some
details”)—which is not the case. For instance, when I publicly asked Patrick
Devedjian, then Minister for Industry in France, how France would vote on the issue
of software patents, Devedjian responded with an impassioned defense of copyright
law, praising Victor Hugo for his role in the adoption of copyright. (The misleading
term “intellectual property” promotes this confusion—one of the reasons it should
never be used.)

 Those who imagine effects like those of copyright law cannot grasp the
disastrous effects of software patents. We can use Victor Hugo as an example to
illustrate the difference.

 A novel and a modern complex program have certain points in common: each
one is large, and implements many ideas in combination. So let’s follow the
analogy, and suppose that patent law had been applied to novels in the
1800s; suppose that states such as France had permitted the patenting of
literary ideas. How would this have affected Victor Hugo’s writing? How
would the effects of literary patents compare with the effects of literary
copyright?

 Consider Victor Hugo’s novel Les Misérables. Since he wrote it, the copyright
belonged only to him. He did not have to fear that some stranger could sue him for
copyright infringement and win. That was impossible, because copyright covers only
the details of a work of authorship, not the ideas embodied in them, and it only
restricts copying. Hugo had not copied Les Misérables, so he was not in danger from
copyright.

 Patents work differently. Patents cover ideas; each patent is a monopoly on
practicing some idea, which is described in the patent itself. Here’s one example of a
hypothetical literary patent:

 	Claim 1: a communication process that represents in the mind of a reader
 the concept of a character who has been in jail for a long time and
 becomes bitter towards society and humankind.

 	Claim 2: a communication process according to claim 1, wherein said
 character subsequently finds moral redemption through the kindness of
 another.

 	Claim 3: a communication process according to claims 1 and 2, wherein
 said character changes his name during the story.

If such a patent had existed in 1862 when Les Misérables was published, the novel
would have conflicted with all three claims, since all these things happened to Jean
Valjean in the novel. Victor Hugo could have been sued, and if sued, he would have
lost. The novel could have been prohibited—in effect, censored—by the patent
holder.

 Now consider this hypothetical literary patent:

 	Claim 1: a communication process that represents in the mind of a reader
 the concept of a character who has been in jail for a long time and
 subsequently changes his name.

Les Misérables would have been prohibited by that patent too, because this description
too fits the life story of Jean Valjean. And here’s another hypothetical
patent:

 	Claim 1: a communication process that represents in the mind of a reader
 the concept of a character who finds moral redemption and then changes
 his name.

Jean Valjean would have been forbidden by this patent too.

 All three patents would cover, and prohibit, the life story of this one
character. They overlap, but they do not precisely duplicate each other, so they
could all be valid simultaneously; all three patent holders could have sued
Victor Hugo. Any one of them could have prohibited publication of Les
Misérables.

 This patent also could have been violated:

 	Claim 1: a communication process that presents a character whose given
 name matches the last syllable of his family name.

through the name “Jean Valjean,” but at least this patent would have been easy to
avoid.

 You might think that these ideas are so simple that no patent office would have
issued them. We programmers are often amazed by the simplicity of the ideas that
real software patents cover—for instance, the European Patent Office has
issued a patent on the progress bar, and a patent on accepting payment
via credit cards. These patents would be laughable if they were not so
dangerous.

 Other aspects of Les Misérables could also have run afoul of patents.
For instance, there could have been a patent on a fictionalized portrayal
of the Battle of Waterloo, or a patent on using Parisian slang in fiction.
Two more lawsuits. In fact, there is no limit to the number of different
patents that might have been applicable for suing the author of a work
such as Les Misérables. All the patent holders would say they deserved a
reward for the literary progress that their patented ideas represent, but these
obstacles would not promote progress in literature, they would only obstruct
it.

 However, a very broad patent could have made all these issues irrelevant.
Imagine a patent with broad claims like these:

 	A communication process structured with narration that continues
 through many pages.

 	A narration structure sometimes resembling a fugue or improvisation.

 	Intrigue articulated around the confrontation of specific characters, each
 in turn setting traps for the others.

 	Narration that presents many layers of society.

 	Narration that shows the wheels of hidden conspiracy.

Who would the patent holders have been? They could have been other novelists,
perhaps Dumas or Balzac, who had written such novels—but not necessarily. It isn’t
required to write a program to patent a software idea, so if our hypothetical literary
patents follow the real patent system, these patent holders would not have had to
write novels, or stories, or anything—except patent applications. Patent parasite
companies, businesses that produce nothing except threats and lawsuits, are
booming nowadays.

 Given these broad patents, Victor Hugo would not have reached the point of
asking what patents might get him sued for using the character of Jean
Valjean, because he could not even have considered writing a novel of this
kind.

 This analogy can help nonprogrammers see what software patents do. Software
patents cover features, such as defining abbreviations in a word processor,
or natural order recalculation in a spreadsheet. Patents cover algorithms
that programs need to use. Patents cover aspects of file formats, such as
Microsoft’s OOXML format. MPEG 2 video format is covered by 39 different US
patents.

 Just as one novel could run afoul of many different literary patents at once, one
program can be prohibited by many different patents at once. It is so much work to
identify all the patents that appear to apply to a large program that only one such
study has been done. A 2004 study of Linux, the kernel of the GNU/Linux
operating system, found 283 different US software patents that seemed to cover it.
That is to say, each of these 283 different patents forbids some computational
process found somewhere in the thousands of pages of source code of Linux. At the
time, Linux was around 1 percent of the whole GNU/Linux system. How many
patents might there be that a distributor of the whole system could be sued
under?

 The way to prevent software patents from bollixing software development is
simple: don’t authorize them. This ought to be easy, since most patent laws have
provisions against software patents. They typically say that “software per
se” cannot be patented. But patent offices around the world are trying to
twist the words and issuing patents on the ideas implemented in programs.
Unless this is blocked, the result will be to put all software developers in
danger.

 Chapter 23
The Danger of Software Patents

Copyright © 2009, 2010, 2014 Richard Stallman
 This transcript was originally published on http://gnu.org, in 2009. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 This is an unedited transcript of the talk presented by Richard Stallman
 on 8 October 2009 at Victoria University of Wellington, in Wellington, New
 Zealand.

I’m most known for starting the free software movement and leading development of
the GNU operating system—although most of the people who use the system
mistakenly believe it’s Linux and think it was started by somebody else a decade
later. But I’m not going to be speaking about any of that today. I’m here to talk
about a legal danger to all software developers, distributors, and users: the danger
of patents—on computational ideas, computational techniques, an idea for
something you can do on a computer.

 Now, to understand this issue, the first thing you need to realize is that
patent law has nothing to do with copyright law—they’re totally different.
Whatever you learn about one of them, you can be sure it doesn’t apply to the
other.

 So, for example, any time a person makes a statement about “intellectual
property,” that’s spreading confusion, because it’s lumping together not only these
two laws but also at least a dozen others. They’re all different, and the result is
any statement which purports to be about “intellectual property” is pure
confusion—either the person making the statement is confused, or the person is
trying to confuse others. But either way, whether it’s accidental or malicious, it’s
confusion.

 Protect yourself from this confusion by rejecting any statement which makes use
of that term. The only way to make thoughtful comments and think clear thoughts
about any one of these laws is to distinguish it first from all the others, and talk or
think about one particular law, so that we can understand what it actually does and
then form conclusions about it. So I’ll be talking about patent law, and
what happens in those countries which have allowed patent law to restrict
software.

 So, what does a patent do? A patent is an explicit, government-issued monopoly
on using a certain idea. In the patent there’s a part called the claims, which
describe exactly what you’re not allowed to do (although they’re written in a way
you probably can’t understand). It’s a struggle to figure out what those
prohibitions actually mean, and they may go on for many pages of fine
print.

 So the patent typically lasts for 20 years, which is a fairly long time in our field.
Twenty years ago there was no World Wide Web—a tremendous amount of the use
of computers goes on in an area which wasn’t even possible to propose 20 years ago.
So of course everything that people do on it is something that’s new since 20 years
ago—at least in some aspect it is new. So if patents had been applied for
we’d be prohibited from doing all of it, and we may be prohibited from
doing all of it in countries that have been foolish enough to have such a
policy.

 Most of the time, when people describe the function of the patent system, they
have a vested interest in the system. They may be patent lawyers, or they may work
in the Patent Office, or they may be in the patent office of a megacorporation, so
they want you to like the system.

 The Economist once referred to the patent system as “a time-consuming lottery.”
If you’ve ever seen publicity for a lottery, you understand how it works: they dwell
on the very unlikely probability of winning, and they don’t talk about the
overwhelming likelihood of losing. In this way, they intentionally and systematically
present a biased picture of what’s likely to happen to you, without actually lying
about any particular fact.

 It’s the same way for the publicity for the patent system: they talk about what
it’s like to walk down the street with a patent in your pocket—or first of all, what
it’s like to get a patent, then what it’s like to have a patent in your pocket, and
every so often you can pull it out and point it at somebody and say, “Give me your
money.”

 To compensate for their bias, I’m going to describe it from the other side, the
victim side—what it’s like for people who want to develop or distribute or run
software. You have to worry that any day someone might walk up to you and point
a patent at you and say, “Give me your money.”

 If you want to develop software in a country that allows software patents, and
you want to work with patent law, what will you have to do?

 You could try to make a list of all the ideas that one might be able to find in the
program that you’re about to write, aside from the fact that you don’t know that
when you start writing the program. [But] even after you finish writing the program
you wouldn’t be able to make such a list.

 The reason is…in the process you conceived of it in one particular way—you’ve
got a mental structure to apply to your design. And because of that, it will block
you from seeing other structures that somebody might use to understand the same
program—because you’re not coming to it fresh; you already designed it with one
structure in mind. Someone else who sees it for the first time might see a different
structure, which involves different ideas, and it would be hard for you to see
what those other ideas are. But nonetheless they’re implemented in your
program, and those patents could prohibit your program, if those ideas are
patented.

 For instance, suppose there were graphical-idea patents and you wanted to draw
a square. Well, you would realize that if there was a patent on a bottom edge, it
would prohibit your square. You could put “bottom edge” on the list of all ideas
implemented in your drawing. But you might not realize that somebody else with a

patent on bottom corners could sue you easily also, because he could take your
drawing and turn it by 45 degrees. And now your square is like this, and it has a
bottom corner.

 So you couldn’t make a list of all the ideas which, if patented, could prohibit
your program.

 What you might try to do is find out all the ideas that are patented that might
be in your program. Now you can’t do that actually, because patent applications are
kept secret for at least 18 months; and the result is the Patent Office could be
considering now whether to issue a patent, and they won’t tell you. And this is not
just an academic, theoretical possibility.

 For instance, in 1984 the Compress program was written, a program for
compressing files using the data compression algorithm, and at that time there was
no patent on that algorithm for compressing files. The author got the algorithm
from an article in a journal. That was when we thought that the purpose of
computer science journals was to publish algorithms so people could use
them.

 He wrote this program, he released it, and in 1985 a patent was issued on that
algorithm. But the patent holder was cunning and didn’t immediately go around
telling people to stop using it. The patent holder figured, “Let’s let everybody dig
their grave deeper.” A few years later they started threatening people; it became
clear we couldn’t use Compress, so I asked for people to suggest other algorithms we
could use for compressing files.

 And somebody wrote and said, “I developed another data compression algorithm
that works better, I’ve written a program, I’d like to give it to you.” So we got
ready to release it, and a week before it was ready to be released, I read in The New
York Times’ weekly patent column, which I rarely saw—it’s a couple of times a
year I might see it—but just by luck I saw that someone had gotten a
patent for “inventing a new method of compressing data.” And so I said we
had better look at this, and sure enough it covered the program we were
about to release. But it could have been worse: the patent could have been
issued a year later, or two years later, or three years later, or five years
later.

 Anyway, someone else came up with another, even better compression algorithm,
which was used in the program gzip, and just about everybody who wanted to
compress files switched to gzip, so it sounds like a happy ending. But you’ll hear
more later. It’s not entirely so happy.

 So, you can’t find out about the patents that are being considered even though
they may prohibit your work once they come out, but you can find out
about the already issued patents. They’re all published by the Patent Office.
The problem is you can’t read them all, because there are too many of
them.

 In the US I believe there are hundreds of thousands of software patents; keeping
track of them would be a tremendous job. So you’re going to have to search for
relevant patents. And you’ll find a lot of relevant patents, but you won’t necessarily
find them all.

 For instance, in the 80s and 90s, there was a patent on “natural order

recalculation” in spreadsheets. Somebody once asked me for a copy of it, so I
looked in our computer file which lists the patent numbers. And then I
pulled out the drawer to get the paper copy of this patent and xeroxed it
and sent it to him. And when he got it, he said, “I think you sent me the
wrong patent. This is something about compilers.” So I thought maybe our
file has the wrong number in it. I looked in it again, and sure enough it
said, “A method for compiling formulas into object code.” So I started to
read it to see if it was indeed the wrong patent. I read the claims, and
sure enough it was the natural order recalculation patent, but it didn’t use
those terms. It didn’t use the term “spreadsheet.” In fact, what the patent
prohibited was dozens of different ways of implementing topological sort—all the
ways they could think of. But I don’t think it used the term “topological
sort.”

 So if you were writing a spreadsheet and you tried to find relevant patents by
searching, you might have found a lot of patents. But you wouldn’t have found this
one until you told somebody, “Oh, I’m working on a spreadsheet,” and he said, “Oh,
did you know those other companies that are making spreadsheets are getting
sued?” Then you would have found out.

 Well, you can’t find all the patents by searching, but you can find a lot of
them. And then you’ve got to figure out what they mean, which is hard,
because patents are written in tortuous legal language which is very hard
to understand the real meaning of. So you’re going to have to spend a
lot of time talking with an expensive lawyer explaining what you want
to do in order to find out from the lawyer whether you’re allowed to do
it.

 Even the patent holders often can’t recognize just what their patents mean. For
instance, there’s somebody named Paul Heckel who released a program for
displaying a lot of data on a small screen, and based on a couple of the ideas in that
program he got a couple of patents.

 I once tried to find a simple way to describe what claim 1 of one of those patents
covered. I found that I couldn’t find any simpler way of saying it than what was in
the patent itself; and that sentence, I couldn’t manage to keep it all in my mind at
once, no matter how hard I tried.

 And Heckel couldn’t follow it either, because when he saw HyperCard, all he
noticed was it was nothing like his program. It didn’t occur to him that the
way his patent was written it might prohibit HyperCard; but his lawyer
had that idea, so he threatened Apple. And then he threatened Apple’s
customers, and eventually Apple made a settlement with him which is
secret, so we don’t know who really won. And this is just an illustration of
how hard it is for anybody to understand what a patent does or doesn’t
prohibit.

 In fact, I once gave this speech and Heckel was in the audience. And at
this point he jumped up and said, “That’s not true, I just didn’t know the
scope of my protection.” And I said, “Yeah, that’s what I said,” at which
point he sat down and that was the end of my experience being heckled by
Heckel. If I had said no, he probably would have found a way to argue with

me.

 Anyway, after a long, expensive conversation with a lawyer, the lawyer will give
you an answer like this:

 If you do something in this area, you’re almost certain to lose a lawsuit; if
 you do something in this area, there’s a considerable chance of losing a lawsuit;
 and if you really want to be safe you’ve got to stay out of this area. But there’s
 a sizeable element of chance in the outcome of any lawsuit.

 So now that you have clear, predictable rules for doing business, what are you
actually going to do? Well, there are three things that you could do to deal with
the issue of any particular patent. One is to avoid it, another is to get a
license for it, and the third is to invalidate it. So I’ll talk about these one by
one.

 First, there’s the possibility of avoiding the patent, which means, don’t
implement what it prohibits. Of course, if it’s hard to tell what it prohibits, it might
be hard to tell what would suffice to avoid it.

 A couple of years ago Kodak sued Sun [for] using a patent for something having
to do with object-oriented programming, and Sun didn’t think it was infringing that
patent. But the court decided it was; and when other people look at that patent
they haven’t the faintest idea whether that decision was right or not. No one can
tell what that patent does or doesn’t cover, but Sun had to pay hundreds
of millions of dollars because of violating a completely incomprehensible
law.

 Sometimes you can tell what you need to avoid, and sometimes what you need
to avoid is an algorithm.

 For instance, I saw a patent for something like the fast Fourier transform, but it
ran twice as fast. Well, if the ordinary FFT is fast enough for your application then
that’s an easy way to avoid this other one. And most of the time that would work.
Once in a while you might be trying to do something where it runs doing FFT all
the time, and it’s just barely fast enough using the faster algorithm. And then you
can’t avoid it, although maybe you could wait a couple of years for a faster
computer. But that’s going to be rare. Most of the time that patent will to be easy
to avoid.

 On the other hand, a patent on an algorithm may be impossible to avoid.
Consider the LZW data compression algorithm. Well, as I explained, we
found a better data compression algorithm, and everybody who wanted to
compress files switched to the program gzip which used the better algorithm.
And the reason is, if you just want to compress the file and uncompress it
later, you can tell people to use this program to uncompress it; then you
can use any program with any algorithm, and you only care how well it
works.

 But LZW is used for other things, too; for instance the PostScript language
specifies operators for LZW compression and LZW uncompression. It’s no use
having another, better algorithm because it makes a different format of data.
They’re not interoperable. If you compress it with the gzip algorithm, you won’t be

able to uncompress it using LZW. So no matter how good your other algorithm is,
and no matter what it is, it just doesn’t enable you to implement PostScript
according to the specs.

 But I noticed that users rarely ask their printers to compress things. Generally
the only thing they want their printers to do is to uncompress; and I also noticed
that both of the patents on the LZW algorithm were written in such a way
that if your system can only uncompress, it’s not forbidden. These patents
were written so that they covered compression, and they had other claims
covering both compression and uncompression; but there was no claim
covering only uncompression. So I realized that if we implement only the
uncompression for LZW, we would be safe. And although it would not satisfy the
specification, it would please the users sufficiently; it would do what they
actually needed. So that’s how we barely squeaked by avoiding the two
patents.

 Now there is GIF format, for images. That uses the LZW algorithm also. It
didn’t take long for people to define another image format, called PNG, which
stands for “PNG’s Not GIF.” I think it uses the gzip algorithm. And we started
saying to people, “Don’t use GIF format, it’s dangerous. Switch to PNG.” And the
users said, “Well, maybe some day, but the browsers don’t implement it yet,” and
the browser developers said, “We may implement it someday, but there’s not much
demand from users.”

 Well, it’s pretty obvious what’s going on—GIF was a de facto standard. In
effect, asking people to switch to a different format, instead of their de facto
standard, is like asking everyone in New Zealand to speak Hungarian. People will
say, “Well, yeah, I’ll learn to speak it after everyone else does.” And so we never
succeeded in asking people to stop using GIF, even though one of those patent
holders was going around to operators of web sites, threatening to sue them unless
they could prove that all of the GIFs on the site were made with authorized,
licensed software.

 So GIF was a dangerous trap for a large part of our community. We thought we
had an alternative to GIF format, namely JPEG, but then somebody said, “I was
just looking through my portfolio of patents”—I think it was somebody that just
bought patents and used them to threaten people—and he said, “and I found that
one of them covers JPEG format.”

 Well, JPEG was not a de facto standard, it’s an official standard, issued by a
standards committee; and the committee had a lawyer too. Their lawyer said he
didn’t think that this patent actually covered JPEG format.

 So who’s right? Well, this patent holder sued a bunch of companies, and if there
was a decision, it would have said who was right. But I haven’t heard about a
decision; I’m not sure if there ever was one. I think they settled, and the settlement
is almost certainly secret, which means that it didn’t tell us anything about who’s
right.

 These are fairly lightweight cases: one patent on JPEG, two patents on the LZW
algorithm used in GIF. Now you might wonder how come there are two patents on
the same algorithm? It’s not supposed to happen, but it did. And the reason is that
the patent examiners can’t possibly take the time to study every pair of things they

might need to study and compare, because they’re not allowed to take
that much time. And because algorithms are just mathematics, there’s no
way you can narrow down which applications and patents you need to
compare.

 You see, in physical engineering fields, they can use the physical nature of what’s
going on to narrow things down. For instance, in chemical engineering, they can say,
“What are the substances going in? What are the substances coming out?” If two
different [patent] applications are different in that way, then they’re not the same
process so you don’t need to worry. But the same math can be represented in ways
that can look very different, and until you study them both together, you
don’t realize they’re talking about the same thing. And, because of this,
it’s quite common to see the same thing get patented multiple times [in
software].

 Remember that program that was killed by a patent before we released it? Well,
that algorithm got patented twice also. In one little field we’ve seen it happen in
two cases that we ran into—the same algorithm being patented twice. Well, I think
my explanation tells you why that happens.

 But one or two patents is a lightweight case. What about MPEG2, the video
format? I saw a list of over 70 patents covering that, and the negotiations to arrange
a way for somebody to license all those patents took longer than developing the
standard itself. The JPEG committee wanted to develop a follow-on standard, and
they gave up. They said there were too many patents; there was no way to do
it.

 Sometimes it’s a feature that’s patented, and the only way to avoid that
patent is not to implement that feature. For instance, the users of the word
processor Xywrite once got a downgrade in the mail, which removed a
feature. The feature was that you could define a list of abbreviations. For
instance, if you define “exp” as an abbreviation for “experiment,” then if you
type “exp-space” or “exp-comma,” the “exp” would change automatically to
“experiment.”

 Then somebody who had a patent on this feature threatened them, and they
concluded that the only thing they could do was to take the feature out. And so
they sent all the users a downgrade.

 But they also contacted me, because my Emacs editor had a feature like that
starting from the late 70s. And it was described in the Emacs manual, so they
thought I might be able to help them invalidate that patent. Well, I’m happy to
know I’ve had at least one patentable idea in my life, but I’m unhappy that
someone else patented it.

 Fortunately, in fact, that patent was eventually invalidated, and partly on the
strength of the fact that I had published using it earlier. But in the meantime they
had had to remove this feature.

 Now, to remove one or two features may not be a disaster. But when you have to
remove 50 features, you could do it, but people are likely to say, “This program’s no
good; it’s missing all the features I want.” So it may not be a solution. And
sometimes a patent is so broad that it wipes out an entire field, like the patent on
public-key encryption, which in fact put public-key encryption basically off limits

for about ten years.

 So that’s the option of avoiding the patent—often possible, but sometimes not,
and there’s a limit to how many patents you can avoid.

 What about the next possibility, of getting a license for the patent?

 Well, the patent holder may not offer you a license. It’s entirely up to him. He
could say, “I just want to shut you down.” I once got a letter from somebody whose
family business was making casino games, which were of course computerized,
and he had been threatened by a patent holder who wanted to make his
business shut down. He sent me the patent. Claim 1 was something like “a
network with a multiplicity of computers, in which each computer supports a
multiplicity of games, and allows a multiplicity of game sessions at the same
time.”

 Now, I’m sure in the 1980s there was a university that set up a room with a
network of workstations, and each workstation had some kind of windowing facility.
All they had to do was to install multiple games and it would be possible to display
multiple game sessions at once. This is so trivial and uninteresting that
nobody would have bothered to publish an article about doing it. No one
would have been interested in publishing an article about doing it, but
it was worth patenting it. If it had occurred to you that you could get a
monopoly on this trivial thing, then you could shut down your competitors with
it.

 But why does the Patent Office issue so many patents that seem absurd and
trivial to us?

 It’s not because the patent examiners are stupid, it’s because they’re
following a system, and the system has rules, and the rules lead to this
result.

 You see, if somebody has made a machine that does something once, and
somebody else designs a machine that will do the same thing, but N times, for us
that’s a for-loop, but for the Patent Office that’s an invention. If there are
machines that can do A, and there are machines that can do B, and somebody
designs a machine that can do A or B, for us that’s an if-then-else statement,
but for the Patent Office that’s an invention. So they have very low standards, and
they follow those standards; and the result is patents that look absurd and trivial to
us. Whether they’re legally valid I can’t say. But every programmer who sees them
laughs.

 In any case, I was unable to suggest anything he could do to help himself, and he
had to shut down his business. But most patent holders will offer you a license. It’s
likely to be rather expensive.

 But there are some software developers that find it particularly easy to get
licenses, most of the time. Those are the megacorporations. In any field the
megacorporations generally own about half the patents, and they cross-license each
other, and they can make anybody else cross-license if he’s really producing
anything. The result is that they end up painlessly with licenses for almost all the
patents.

 IBM wrote an article in its house magazine, Think magazine—I think it’s issue
5, 1990—about the benefit IBM got from its almost 9,000 US patents at the time

(now it’s up to 45,000 or more). They said that one of the benefits was that they
collected money, but the main benefit, which they said was perhaps an order of
magnitude greater, was “getting access to the patents of others,” namely
cross-licensing.

 What this means is since IBM, with so many patents, can make almost
everybody give them a cross-license, IBM avoids almost all the grief that the patent
system would have inflicted on anybody else. So that’s why IBM wants software
patents. That’s why the megacorporations in general want software patents, because
they know that by cross-licensing, they will have a sort of exclusive club on top of a
mountain peak. And all the rest of us will be down here, and there’s no way we can
get up there. You know, if you’re a genius, you might start up a small company and
get some patents, but you’ll never get into IBM’s league, no matter what you
do.

 Now a lot of companies tell their employees, “Get us patents so we can defend
ourselves” and they mean, “use them to try to get cross-licensing,” but it just
doesn’t work well. It’s not an effective strategy if you’ve got a small number of
patents.

 Suppose you’ve got three patents. One points there, one points there, and one
points there, and somebody over there points a patent at you. Well, your three
patents don’t help you at all, because none of them points at him. On the other
hand, sooner or later, somebody in the company is going to notice that this patent
is actually pointing at some people, and [the company] could threaten them and
squeeze money out of them—never mind that those people didn’t attack this
company.

 So if your employer says to you, “We need some patents to defend ourselves, so
help us get patents,” I recommend this response:

 Boss, I trust you and I’m sure you would only use those patents to defend
 the company if it’s attacked. But I don’t know who’s going to be the CEO of
 this company in five years. For all I know, it might get acquired by Microsoft.
 So I really can’t trust the company’s word to only use these patents for defense
 unless I get it in writing. Please put it in writing that any patents I provide
 for the company will only be used for self-defense and collective security, and
 not for repression, and then I’ll be able to get patents for the company with a
 clean conscience.

 It would be most interesting to raise this not just in private with your boss, but
also on the company’s discussion list.

 The other thing that could happen is that the company could fail and its assets
could be auctioned off, including the patents; and the patents will be bought by
someone who means to use them to do something nasty.

 This cross-licensing practice is very important to understand, because this is
what punctures the argument of the software patent advocates who say that
software patents are needed to protect the starving genius. They give you a scenario
which is a series of unlikelihoods.

 So let’s look at it. According to this scenario, there’s a brilliant designer of

whatever, who’s been working for years by himself in his attic coming up with
a better way to do whatever it is. And now that it’s ready, he wants to
start a business and mass-produce this thing; and because his idea is so
good his company will inevitably succeed— except for one thing: the big
companies will compete with him and take all his market the away. And
because of this, his business will almost certainly fail, and then he will
starve.

 Well, let’s look at all the unlikely assumptions here.

 First of all, that he comes up with this idea working by himself. That’s not very
likely. In a high-tech field, most progress is made by people working in a field, doing
things and talking with people in the field. But I wouldn’t say it’s impossible, not
that one thing by itself.

 But anyway the next supposition is that he’s going to start a business and that
it’s going to succeed. Well, just because he’s a brilliant engineer doesn’t mean that
he’s any good at running a business. Most new businesses fail; more than 95 percent
of them, I think, fail within a few years. So that’s probably what’s going to happen
to him, no matter what.

 OK, let’s assume that in addition to being a brilliant engineer who came up with
something great by himself, he’s also talented at running businesses. If he has a
knack for running businesses, then maybe his business won’t fail. After all,
not all new businesses fail, there are a certain few that succeed. Well, if
he understands business, then instead of trying to go head to head with
large companies, he might try to do things that small companies are better
at and have a better chance of succeeding. He might succeed. But let’s
suppose it fails anyway. If he’s so brilliant and has a knack for running
businesses, I’m sure he won’t starve, because somebody will want to give him a
job.

 So a series of unlikelihoods—it’s not a very plausible scenario. But let’s look at
it anyway.

 Because where they go from there is to say the patent system will “protect” our
starving genius, because he can get a patent on this technique. And then when IBM
wants to compete with him, he says, “IBM, you can’t compete with me, because I’ve
got this patent,” and IBM says, “Oh, no, not again!”

 Well, here’s what really happens.

 IBM says, “Oh, how nice, you have a patent. Well, we have this patent, and this
patent, and this patent, and this patent, and this patent, all of which cover other
ideas implemented in your product, and if you think you can fight us on all
those, we’ll pull out some more. So let’s sign a cross-license agreement,
and that way nobody will get hurt.” Now since we’ve assumed that our
genius understands business, he’s going to realize that he has no choice. He’s
going to sign the cross-license agreement, as just about everybody does
when IBM demands it. And then this means that IBM will get “access” to
his patent, meaning IBM would be free to compete with him just as if
there were no patents, which means that the supposed benefit that they
claim he would get by having this patent is not real. He won’t get this
benefit.

 The patent might “protect” him from competition from you or me, but not from
IBM—not from the very megacorporations which the scenario says are the threat to
him. You know in advance that there’s got to be a flaw in this reasoning when
people who are lobbyists for megacorporations recommend a policy supposedly
because it’s going to protect their small competitors from them. If it really were
going to do that, they wouldn’t be in favor of it. But this explains why [software
patents] won’t do it.

 Even IBM can’t always do this, because there are companies that we refer to as
patent trolls or patent parasites, and their only business is using patents to squeeze
money out of people who really make something.

 Patent lawyers tell us that it’s really wonderful to have patents in your field, but
they don’t have patents in their field. There are no patents on how to send or write
a threatening letter, no patents on how to file a lawsuit, and no patents on
how to persuade a judge or jury, so even IBM can’t make the patent trolls
cross-license. But IBM figures, “Our competition will have to pay them too;
this is just part of the cost of doing business, and we can live with it.”
IBM and the other megacorporations figure that the general dominion
over all activity that they get from their patents is good for them, and
paying off the trolls they can live with. So that’s why they want software
patents.

 There are also certain software developers who find it particularly difficult to get
a patent license, and those are the developers of free software. The reason is that
the usual patent license has conditions we can’t possibly fulfill, because usual patent
licenses demand a payment per copy. But when software gives users the freedom to
distribute and make more copies, we have no way to count the copies that
exist.

 If someone offered me a patent license for a payment of one-millionth of
a dollar per copy, the total amount of money I’d have to pay maybe is
in my pocket now. Maybe it’s $50, but I don’t know if it’s $50, or $49,
or what, because there’s no way I can count the copies that people have
made.

 A patent holder doesn’t have to demand a payment per copy; a patent holder
could offer you a license for a single lump sum, but those lump sums tend to be big,
like US$100,000.

 And the reason that we’ve been able to develop so much freedom-respecting
software is [that] we can develop software without money, but we can’t pay a lot of
money without money. If we’re forced to pay for the privilege of writing software for
the public, we won’t be able to do it very much.

 That’s the possibility of getting a license for the patent. The other possibility is
to invalidate the patent. If the country considers software patents to be basically
valid, and allowed, the only question is whether that particular patent meets the
criteria. It’s only useful to go to court if you’ve got an argument to make that might
prevail.

 What would that argument be? You have to find evidence that, years ago, before
the patent was applied for, people knew about the same idea. And you’d have to
find things today that demonstrate that they knew about it publicly at that time.

So the dice were cast years ago, and if they came up favorably for you, and if you
can prove that fact today, then you have an argument to use to try to invalidate the
patent. And it might work.

 It might cost you a lot of money to go through this case, and as a result,
a probably invalid patent is a very frightening weapon to be threatened
with if you don’t have a lot of money. There are people who can’t afford
to defend their rights—lots of them. The ones who can afford it are the
exception.

 These are the three things that you might be able to do about each patent that
prohibits something in your program. The thing is, whether each one is
possible depends on different details of the circumstances, so some of the
time, none of them is possible; and when that happens, your project is
dead.

 But lawyers in most countries tell us, “Don’t try to find the patents in advance,”
and the reason is that the penalty for infringement is bigger if you knew about the
patent. So what they tell you is “Keep your eyes shut. Don’t try to find
out about the patents, just go blindly taking your design decisions, and
hope.”

 And of course, with each single design decision, you probably don’t step on a
patent. Probably nothing happens to you. But there are so many steps you have to
take to get across the minefield, it’s very unlikely you will get through safely. And of
course, the patent holders don’t all show up at the same time, so you don’t know
how many there are going to be.

 The patent holder of the natural order recalculation patent was demanding 5
percent of the gross sales of every spreadsheet. You could imagine paying for a few
such licenses, but what happens when patent holder number 20 comes along, and
wants you to pay out the last remaining 5 percent? And then what happens when
patent holder number 21 comes along?

 People in business say that this scenario is amusing but absurd, because your
business would fail long before you got there. They told me that two or three such
licenses would make your business fail. So you’d never get to 20. They
show up one by one, so you never know how many more there are going to
be.

 Software patents are a mess. They’re a mess for software developers, but in
addition they’re a restriction on every computer user because software patents
restrict what you can do on your computer.

 This is very different from patents, for instance, on automobile engines.
These only restrict companies that make cars; they don’t restrict you and
me. But software patents do restrict you and me, and everybody who uses
computers. So we can’t think of them in purely economic terms; we can’t judge
this issue purely in economic terms. There’s something more important at
stake.

 But even in economic terms, the system is self-defeating, because its purpose is
supposed to be to promote progress. Supposedly by creating this artificial
incentive for people to publish ideas, it’s going to help the field progress.
But all it does is the exact opposite, because the big job in software is not

coming up with ideas, it’s implementing thousands of ideas together in
one program. And software patents obstruct that, so they’re economically
self-defeating.

 And there’s even economic research showing that this is so—showing how in a
field with a lot of incremental innovation, a patent system can actually reduce
investment in R&D. And of course, it also obstructs development in other ways.
So even if we ignore the injustice of software patents, even if we were to
look at it in the narrow economic terms that are usually proposed, it’s still
harmful.

 People sometimes respond by saying that “People in other fields have been living
with patents for decades, and they’ve gotten used to it, so why should you be an
exception?”

 Now, that question has an absurd assumption. It’s like saying, “Other people get
cancer, why shouldn’t you?” I think every time someone doesn’t get cancer, that’s
good, regardless of what happened to the others. That question is absurd because of
its presupposition that somehow we all have a duty to suffer the harm done by
patents.

 But there is a sensible question buried inside it, and that sensible question is
“What differences are there between various fields that might affect what is good or
bad patent policy in those fields?”

 There is an important basic difference between fields in regard to how many
patents are likely to prohibit or cover parts of any one product.

 Now we have a naive idea in our minds which I’m trying to get rid of, because
it’s not true. And it’s that on any one product there is one patent, and that patent
covers the overall design of that product. So if you design a new product, it can’t be
patented already, and you will have an opportunity to get “the patent” on that
product.

 That’s not how things work. In the 1800s, maybe they did, but not now. In fact,
fields fall on a spectrum of how many patents [there are] per product. The
beginning of the spectrum is one, but no field is like that today; fields are at various
places on this spectrum.

 The field that’s closest to that is pharmaceuticals. A few decades ago, there
really was one patent per pharmaceutical, at least at any time, because the patent
covered the entire chemical formula of that one particular substance. Back then, if
you developed a new drug, you could be sure it wasn’t already patented by
somebody else and you could get the one patent on that drug.

 But that’s not how it works now. Now there are broader patents, so now you
could develop a new drug, and you’re not allowed to make it because somebody has
a broader patent which covers it already.

 And there might even be a few such patents covering your new drug
simultaneously, but there won’t be hundreds. The reason is, our ability to do
biochemical engineering is so limited that nobody knows how to combine so many
ideas to make something that’s useful in medicine. If you can combine a couple of
them you’re doing pretty well at our level of knowledge. But other fields involve
combining more ideas to make one thing.

 At the other end of the spectrum is software, where we can combine more ideas

into one usable design than anybody else, because our field is basically easier than
all other fields. I’m presuming that the intelligence of people in our field is the same
as that of people in physical engineering. It’s not that we’re fundamentally better
than they are; it’s that our field is fundamentally easier, because we’re working with
mathematics.

 A program is made out of mathematical components, which have a definition,
whereas physical objects don’t have a definition. The matter does what it does, so
through the perversity of matter, your design may not work the way it “should”
have worked. And that’s just tough. You can’t say that the matter has a bug in it,
and the physical universe should get fixed. [Whereas] we [programmers] can make a
castle that rests on a mathematically thin line, and it stays up because nothing
weighs anything.

 There’re so many complications you have to cope with in physical engineering
that we don’t have to worry about.

 For instance, when I put an if-statement inside of a while-loop,

 	I don’t have to worry that if this while-loop repeats at the wrong rate,
 the if-statement might start to vibrate and it might resonate and crack;

 	I don’t have to worry that if it resonates much faster—you know, millions
 of times per second—that it might generate radio frequency signals that
 might induce wrong values in other parts of the program;

 	I don’t have to worry that corrosive fluids from the environment might
 seep in between the if-statement and the while-statement and start
 eating away at them until the signals don’t pass anymore;

 	I don’t have to worry about how the heat generated by my if-statement
 is going to get out through the while-statement so that it doesn’t make
 the if-statement burn out; and

 	I don’t have to worry about how I would take out the broken if-statement
 if it does crack, burn, or corrode, and replace it with another if-statement
 to make the program run again.

 For that matter, I don’t have to worry about how I’m going to insert the
if-statement inside the while-statement every time I produce a copy of the
program. I don’t have to design a factory to make copies of my program, because
there are various general commands that will make copies of anything.

 If I want to make copies on CD, I just have to write a master; and there’s one
program I can [use to] make a master out of anything, write any data I want. I can
make a master CD and write it and send it off to a factory, and they’ll duplicate

whatever I send them. I don’t have to design a different factory for each thing I
want to duplicate.

 Very often with physical engineering you have to do that; you have to design
products for manufacturability. Designing the factory may even be a bigger job
than designing the product, and then you may have to spend millions of
dollars to build the factory. So with all of this trouble, you’re not going to be
able to put together so many different ideas in one product and have it
work.

 A physical design with a million nonrepeating different design elements is a
gigantic project. A program with a million different design elements, that’s nothing.
It’s a few hundred thousand lines of code, and a few people will write that in a few
years, so it’s not a big deal. So the result is that the patent system weighs
proportionately heavier on us than it does on people in any other field who are
being held back by the perversity of matter.

 A lawyer did a study of one particular large program, namely the kernel Linux,
which is used together with the GNU operating system that I launched. This
was five years ago now; he found 283 different US patents, each of which
appeared to prohibit some computation done somewhere in the code of Linux.
At the time I saw an article saying that Linux was 0.25 percent of the
whole system. So by multiplying 300 by 400 we can estimate the number
of patents that would prohibit something in the whole system as being
around 100,000. This is a very rough estimate only, and no more accurate
information is available, since trying to figure it out would be a gigantic
task.

 Now this lawyer did not publish the list of patents, because that would have
endangered the developers of Linux the kernel, putting them in a position
where the penalties if they were sued would be greater. He didn’t want to
hurt them; he wanted to demonstrate how bad this problem is, of patent
gridlock.

 Programmers can understand this immediately, but politicians usually don’t
know much about programming; they usually imagine that patents are basically
much like copyrights, only somehow stronger. They imagine that since software
developers are not endangered by the copyrights on their work, that they won’t be
endangered by the patents on their work either. They imagine that, since when you
write a program you have the copyright, [therefore likewise] if you write a program
you have the patents also. This is false—so how do we give them a clue
what patents would really do? What they really do in countries like the
US?

 I find it’s useful to make an analogy between software and symphonies. Here’s
why it’s a good analogy.

 A program or symphony combines many ideas. A symphony combines many
musical ideas. But you can’t just pick a bunch of ideas and say “Here’s
my combination of ideas, do you like it?” Because in order to make them
work you have to implement them all. You can’t just pick musical ideas
and list them and say, “Hey, how do you like this combination?” You can’t
hear that [list]. You have to write notes which implement all these ideas

together.

 The hard task, the thing most of us wouldn’t be any good at, is writing all these
notes to make the whole thing sound good. Sure, lots of us could pick musical ideas
out of a list, but we wouldn’t know how to write a good-sounding symphony to
implement those ideas. Only some of us have that talent. That’s the thing that
limits you. I could probably invent a few musical ideas, but I wouldn’t know how to
use them to any effect.

 So imagine that it’s the 1700s, and the governments of Europe decide that they
want to promote the progress of symphonic music by establishing a system of
musical idea patents, so that any musical idea described in words could be
patented.

 For instance, using a particular sequence of notes as a motif could be
patented, or a chord progression could be patented, or a rhythmic pattern
could be patented, or using certain instruments by themselves could be
patented, or a format of repetitions in a movement could be patented. Any
sort of musical idea that could be described in words would have been
patentable.

 Now imagine that it’s 1800 and you’re Beethoven, and you want to write a
symphony. You’re going to find it’s much harder to write a symphony you don’t get
sued for than to write one that sounds good, because you have to thread your
way around all the patents that exist. If you complained about this, the
patent holders would say, “Oh, Beethoven, you’re just jealous because we
had these ideas first. Why don’t you go and think of some ideas of your
own?”

 Now Beethoven had ideas of his own. The reason he’s considered a great
composer is because of all of the new ideas that he had, and he actually used. And
he knew how to use them in such a way that they would work, which was to
combine them with lots of well-known ideas. He could put a few new ideas into a
composition together with a lot of old and uncontroversial ideas. And the result was
a piece that was controversial, but not so much so that people couldn’t get used to
it.

 To us, Beethoven’s music doesn’t sound controversial; I’m told it was, when it
was new. But because he combined his new ideas with a lot of known ideas, he was
able to give people a chance to stretch a certain amount. And they could, which is
why to us those ideas sound just fine. But nobody, not even a Beethoven, is
such a genius that he could reinvent music from zero, not using any of the
well-known ideas, and make something that people would want to listen to.
And nobody is such a genius he could reinvent computing from zero, not
using any of the well-known ideas, and make something that people want to
use.

 When the technological context changes so frequently, you end up with a
situation where what was done 20 years ago is totally inadequate. Twenty years ago
there was no World Wide Web. So, sure, people did a lot of things with computers
back then, but what they want to do today are things that work with the World
Wide Web. And you can’t do that using only the ideas that were known 20 years
ago. And I presume that the technological context will continue to change, creating

fresh opportunities for somebody to get patents that give the shaft to the whole
field.

 Big companies can even do this themselves. For instance, a few years ago
Microsoft decided to make a phony open standard for documents and to
get it approved as a standard by corrupting the International Standards
Organization, which they did. But they designed it using something that
Microsoft had patented. Microsoft is big enough that it can start with a
patent, design a format or protocol to use that patented idea (whether it’s
helpful or not), in such a way that there’s no way to be compatible unless
you use that same idea too. And then Microsoft can make that a de facto
standard with or without help from corrupted standards bodies. Just by its
weight it can push people into using that format, and that basically means
that they get a stranglehold over the whole world. So we need to show the
politicians what’s really going on here. We need to show them why this is
bad.

 Now I’ve heard it said that the reason New Zealand is considering software
patents is that one large company wants to be given some monopolies. To restrict
everyone in the country so that one company will make more money is the absolute
opposite of statesmanship.

 Chapter 24
Giving the Software Field Protection from Patents

 Copyright © 2012, 2013 Free Software Foundation
 A version of this article was first published on the Wired web site, as “Let’s Limit the
Effect of Software Patents, Since We Can’t Eliminate Them” (Wired, 1 November 2012,
http://wired.com/opinion/2012/11/richard-stallman-software-patents/). It was published on
http://gnu.org in 2012. This version is part of Free Software, Free Society: Selected Essays of
Richard M. Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Patents
threaten every software developer, and the patent wars we have long feared have
broken out. Software developers and software users—which, in our society, is most
people—need software to be free of patents.

 The patents that threaten us are often called “software patents,” but that term
is misleading. Such patents are not about any specific program. Rather,
each patent describes some practical idea, and says that anyone carrying
out the idea can be sued. So it is clearer to call them “computational idea
patents.”

 The US patent system doesn’t label patents to say this one’s a “software patent”
and that one isn’t. Software developers are the ones who make a distinction between
the patents that threaten us—those that cover ideas that can be implemented in
software—and the rest. For example, if the patented idea is the shape of a physical
structure or a chemical reaction, no program can implement that idea; that
patent doesn’t threaten the software field. But if the idea that’s patented
is a computation, that patent’s barrel points at software developers and
users.

 This is not to say that computational idea patents prohibit only software. These
ideas can also be implemented in hardware—and many of them have been. Each
patent typically covers both hardware and software implementations of the
idea.

 The Special Problem of Software

 Still, software is where computational idea patents cause a special problem. In
software, it’s easy to implement thousands of ideas together in one program. If 10
percent are patented, that means hundreds of patents threaten it.

 When Dan Ravicher of the Public Patent Foundation studied one large program
(Linux, which is the kernel of the GNU/Linux operating system) in 2004, he found
283 US patents that appeared to cover computing ideas implemented in the source
code of that program. That same year, a magazine estimated that Linux was .25
percent of the whole GNU/Linux system. Multiplying 300 by 400 we get the
order-of-magnitude estimate that the system as a whole was threatened by around

100,000 patents.

 If half of those patents were eliminated as “bad quality”—mistakes of
the patent system, that is—it would not really change things. Whether
100,000 patents or 50,000, it’s the same disaster. This is why it’s a mistake
to limit our criticism of software patents to just “patent trolls” or “bad
quality” patents. The worst patent aggressor today is Apple, which isn’t a
“troll” by the usual definition; I don’t know whether Apple’s patents are
“good quality,” but the better the patent’s “quality” the more dangerous its
threat.

 We need to fix the whole problem, not just part of it.

 The usual suggestions for correcting this problem legislatively involve changing
the criteria for granting patents—for instance, to ban issuance of patents on
computational practices and systems to perform them. This approach has two
drawbacks.

 First, patent lawyers are clever at reformulating patents to fit whatever rules
may apply; they transform any attempt at limiting the substance of patents into a
requirement of mere form. For instance, many US computational idea patents
describe a system including an arithmetic unit, an instruction sequencer, a memory,
plus controls to carry out a particular computation. This is a peculiar way of
describing a computer running a program that does a certain computation; it was
designed to make the patent application satisfy criteria that the US patent system
was believed for a time to require.

 Second, the US already has many thousands of computational idea patents, and
changing the criteria to prevent issuing more would not get rid of the existing ones.
We would have to wait almost 20 years for the problem to be entirely corrected
through the expiration of these patents. We could envision legislating the
abolition of these existing patents, but that is probably unconstitutional. (The
Supreme Court has perversely insisted that Congress can extend private
privileges at the expense of the public’s rights but that it can’t go in the other
direction.)

 A Different Approach: Limit Effect, Not Patentability

 My suggestion is to change the effect of patents. We should legislate that
developing, distributing, or running a program on generally used computing
hardware does not constitute patent infringement. This approach has several
advantages:

 	It does not require classifying patents or patent applications as “software”
 or “not software.”

 	It provides developers and users with protection from both existing and
 potential future computational idea patents.

 	Patent lawyers cannot defeat the intended effect by writing applications
 differently.

 This approach doesn’t entirely invalidate existing computational idea
patents, because they would continue to apply to implementations using
special-purpose hardware. This is an advantage because it eliminates an
argument against the legal validity of the plan. The US passed a law some
years ago shielding surgeons from patent lawsuits, so that even if surgical
procedures are patented, surgeons are safe. That provides a precedent for this
solution.

 Software developers and software users need protection from patents. This is the
only legislative solution that would provide full protection for all. We could then go
back to competing or cooperating…without the fear that some stranger will wipe
away our work.

 Part V
Part V: Free Software Licensing

 25 Introduction to the Licenses

 26 How to Choose a License for Your Own Work

 27 The X Window System Trap

 28 Programs Must Not Limit the Freedom to Run Them

 29 What Is Copyleft?

 30 Why Copyleft?

 31 Copyleft: Pragmatic Idealism

 32 The GNU General Public License

 33 Why Upgrade to GPLv3

 34 The GNU Lesser General Public License

 35 GNU Free Documentation License

 36 On Selling Exceptions to the GNU GPL

 Chapter 25
Introduction to the Licenses

 Copyright © 2010 Free Software Foundation, Inc.
 This essay is published in Free Software, Free Society: Selected Essays of Richard M. Stallman,
3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Written
by Brett Smith and Richard Stallman.

This part contains the text of the latest versions of the primary GNU licenses: the
GNU General Public License (GNU GPL), the GNU Lesser General Public License
(LGPL), and the GNU Free Documentation License (FDL). Though they are legal
documents, they belong in this book of essays because they are concrete expressions
of the ideals of free software.

 Software development for the GNU operating system began in 1984. Once
Richard Stallman had parts of the GNU system that were worth releasing, he
needed a license to release them under. Some free software licenses already existed;
these gave users permission to modify and redistribute the software, but they also
allowed using the code in proprietary versions and proprietary programs. Using
those licenses, GNU would have failed to achieve its goal of delivering freedom to all
users, because middlemen would have converted the GNU code into proprietary
software.

 So Stallman devised a license to assure every user the freedom to modify and
redistribute the software. It granted these permissions under one key condition:
whoever distributed the software must pass along the authorization to modify and
redistribute that same software, along with the source code making it practical to
do so. Stallman coined the term “copyleft” (see “What Is Copyleft?” on [link]) to
describe this key twist of using the legal power of copyright to ensure freedom for all

users.

 GNU copyleft licenses were first developed for software, and later for related
areas such as software documentation. In them, the principles of the free software
movement, explained throughout the essays in this book, take practical form. Each
of their successive revisions has had to wrestle with free software’s legal and
practical obstacles and offers numerous illustrations of how free software ideals are
codified into legal terms.

 The Origins of the GPL

 The first version of the GNU General Public License was published in 1989—but
Stallman had been releasing software under copyleft licenses as part of the GNU
Project since as early as 1985. Prior to 1989, each published GNU program had
been covered by a license specifically tailored for it. Instead of a single GNU
General Public License, there was a GNU CC General Public License, a GDB
General Public License, and so on. These licenses were identical except for minor
differences: for instance, terms about displaying license notices to users were
different for different programs and, unless it covered a program that was just
one source file, each license contained the name of the program it applied
to.

 By 1989, Stallman had had enough experience with different GNU packages
under slightly different licenses to conclude that it was crucial to unify them into
one license that would cover all these packages. He worked with Jerry Cohen, an
attorney at Perkins Smith & Cohen LLP, to collect concepts from all the different
licenses written up to that point, and bring them together into one license. It
was thus that on 1 February 1989 the GNU General Public License was
born.

 The first version of the license sought to ensure two results: first, that all
derived works of the software would be released under the same license
and, second, that everyone who received the software would have a chance
to get the source code. These requirements implement a strong copyleft
by blocking the three main ways of making programs proprietary: with
copyright, with end-user license agreements, and by not distributing source
code.

 In comparison to the program-specific licenses that had preceded it, GPL
version 1 featured few substantial changes—the GPL was evolutionary, not
revolutionary—but it made a big practical difference. Previously, developers who
had wanted to copyleft a program had needed to tailor one of the existing licenses
to that program. Many had not bothered. With the release of the GPL, those
developers had a license they could use out of the box to provide all of their
users with freedom to share and change the software. It was a powerful
tool.

 Version 2

 After the 1981 US Supreme Court decision in Diamond v. Diehr, the US Patent
and Trademark Office began issuing patents for software. Software patents threaten
free software and proprietary software alike (see part IV in this book),
and Stallman realized that they could subvert the copyleft in the GNU
GPL.

 By selectively issuing patent licenses, patent holders can arbitrarily control how
the software under them is distributed or modified. A patent holder can give one
party permission to resell the program, another permission to develop and use
a modified version at her company, and a third permission to do all the
activities that the GPL itself allows. They can demand whatever they wish in
exchange for these permissions. They have this power over any software
that implements the patented idea, whether or not they have modified or
distributed it themselves. This power threatens free software because third
parties with patents can impose restrictions on free software users and
developers.

 If patent holders don’t distribute or modify software, then a software license
based on copyright like the GPL can’t control their activities: they haven’t done
anything that requires permission under the license. But the software license can
stop each of the program’s distributors from entering limiting agreements with the
patent holder. Enter GPL version 2: a new section in the license (sec. 7)
explicitly says that if parties are subject to other legal agreements—such as a
patent license—that contradict the GPL’s terms, then the licensee must
refrain from distributing the software at all. As a result, any party that
wants to distribute or modify the software, and also obtain a patent license,
must ensure that the terms of that license are consistent with all of the
GPL’s conditions: recipients of the software must receive it under the same
terms, with no additional restrictions, and have the means to get the source
code.

 This new section protected the integrity of the distribution system for
GPL-covered software. A fundamental principle of the license is that every
licensee, from the most humble individual to the largest corporation, has
the exact same rights to share and change the software. Patent holders
who do not distribute the software themselves and selectively issues patent
licenses could potentially interfere with this goal, splitting licensees into
different groups however they see fit. Section 7 of GPL version 2 prevents this
abuse.

 The LGPL

 The GPL worked well for the programming tools, utilities, and games that were
released by the GNU Project in the early years; however, Stallman recognized that
releasing the recently developed GNU C Library the same way could backfire. Aside
from some extensions, the GNU C Library was to be a compatible replacement for
the Unix C Library, so any C program would be able link with either one. If
proprietary C programs were not allowed to use the GNU C Library, they
would simply use the Unix library. Being strict in this case would gain
nothing.

 Stallman decided to compromise with a modified copyleft: one that would
protect the freedom of the library itself, but not that of the programs that
use it. This idea was implemented in a license originally called the GNU
Library General Public License, first published as version 2.0, in June 1991.
The original LGPL stated Conditions like the GPL’s—with an important
exception: if someone else’s program used the library only by referring to
it as a library, that program’s source could be distributed under license
terms of the author’s choosing. However, the executable made by combining
the program and the library had to come with a copy of the LGPL and
source code for the library, and provide some mechanism for users who
have modified the library to update the executable to use their modified
library.

 How does a developer use the work as a library in order to take advantage of
the special set of conditions provided by LGPLv2? Think of a computer
program as a series of instructions for doing a particular job: compiling
or linking the program with a library provides the programmer with a
means to say, “When the program gets to this point, get further instructions
from the library, and come back here when those are done.” Libraries are
commonly used in software development because they make the effort less
repetitive and less error prone: programmers don’t have to reinvent the
wheel—and perhaps introduce bugs in the process—every time they want to
accomplish a particular task. Because libraries are so widely created and used,
developers have the means to readily take advantage of the LGPL’s additional
permissions.

 Version 2.0 of the license worked as intended: in some situations, proprietary
software developers chose to use an LGPL-covered library over a proprietary
alternative, and users received the freedom to share and change that library. This
did not produce an “ideal” outcome—where the user had complete control over the
entire program—but in these cases the GPL would not have achieved that ideal
outcome either. The LGPL assured the users some freedom where they would have
otherwise had none.

 The name “Library GPL” led some free software developers to assume all
libraries ought on principle to be licensed this way, but that was not the
intent—when a free library has no proprietary competitor, releasing it under the
GNU GPL can benefit free software. To avoid this unintended message, Stallman
renamed this license to the Lesser General Public License, and incremented the
version number to 2.1 to reflect the relatively minor changes in the text: the license

sported a new preamble, a few wording clarifications, and allowed programs to make
their calls to the library through special system facilities for shared libraries where
those are available. The Lesser General Public License version 2.1 was released in
February 1999.

 The FDL

 At the turn of the century, free software was growing much faster than it had
been previously; the documentation, however, was not keeping pace. Stallman was
concerned about this failure and wrote about it in “Free Software Needs Free
Documentation” ([link]).

 While there are some similarities between software and documentation—they are
both works that are meant for practical use—there are important differences in
the ways they can be used. The GPL and the LGPL were not suitable for
manuals.

 For some time, GNU packages had been using an untitled, simple, ad hoc
copyleft license for each manual. Since each manual’s license was different, text
could not be copied from one manual to another. So Stallman wrote the GNU Free
Documentation License, a copyleft license designed primarily for software
documentation and other practical written works.

 The FDL was first published in March 2000. The principles of the copyleft
remain the same: everyone who receives a copy of the work should be able to modify
and redistribute it. Where the FDL differs from the software licenses is in
the details of its implementation: conditions about how to attribute the
work and provide “source code”—an editable version of the document—are
different.

 Version 3

 During the 1990s, as free software became more popular, the GPL emerged as
the clear copyleft license of choice for the community, and was adopted by the
majority of free software projects; at the same time, however, proprietary developers
had come up with methods of effectively denying users the freedoms that the GPL
was meant to protect, without actually violating the GPL. In addition, there were
other practices that the GPL did not handle conveniently. To deal with these issues
called for an updated version of the license.

 Around 2002, Stallman and others at the Free Software Foundation began
discussing how to update the GPL, and the LGPL along with it. The FSF
established a public review process, run with help from attorneys at the

Software Freedom Law Center, to catch possible problems before actually
releasing the new licenses. Committees of advisors from the community
studied issues raised by public comments and reported the various positions
and arguments to Stallman, who decided what policy to adopt; then he
wrote license text with advice and suggestions from the attorneys. The
importance of the changes made are explained in “Why Upgrade to GPLv3”
([link]).

 Version 3 used new terminology to promote uniform interpretations in different
jurisdictions, and modified some requirements to fit new practices in the free
software community. Beyond that, it introduced several new conditions to
strengthen the copyleft and thereby the free software community as a whole. For
instance, it

 	blocked distributors from restricting users by building hardware that
 rejects the users’ modified versions (“tivoization”);

 	allowed code to carry limited additional requirements, for compatibility
 with some other popular free software licenses;

 	and strengthened patent requirements by providing clear terms to handle
 patent cross-licenses, which are common arrangements between large
 patent-holding companies.

 Both GPLv3 and LGPLv3 included terms to address all of these issues, and were
finally released on 29 June 2007. These licenses are the state of the art in
copyleft, going farther than any other software license to protect users’
freedom and bring about a world in harmony with the ideals expressed in this
book.

 Chapter 26
How to Choose a License for Your Own Work

Copyright © 2011, 2013, 2014 Free Software Foundation, Inc.
 This essay was first published on http://gnu.org, in 2011. This version of it is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 Introduction

 People often ask us what license we recommend they use for their project. We’ve
written about this publicly before, but the information has been scattered around
between different essays, FAQ entries, and license commentaries. This article
collects all that information into a single source, to make it easier for people to
follow and refer back to.

 These recommendations are for works designed to do practical jobs. Those
include software, documentation, and some other things. Works of art, and works
that state a point of view, are different issues; the GNU Project has no general
stand about how they should be released, except that they should all be usable
without nonfree software (in particular, without DRM [1]). However, you might want
to follow these recommendations for art works that go with a particular
program.

 The recommendations apply to licensing a work that you create—whether that’s
a modification of an existing work, or a new original work. They do not address the
issue of combining existing material under different licenses. If you’re looking for
help with that, please check our GPL FAQ. [2]

 After you see what we recommend here, if you’d like advice, you can write to
licensing@gnu.org. Note that it will probably take a few weeks for the licensing
team to get back to you; if you get no response in a month, please write
again.

 Contributing to an Existing Project

 When you contribute to an existing project, you should usually release your
modified versions under the same license as the original work. It’s good to cooperate
with the project’s maintainers, and using a different license for your modifications
often makes that cooperation very difficult. You should only do that when there is a
strong reason to justify it.

 One case where using a different license can be justified is when you make major
changes to a work under a noncopyleft license. If the version you’ve created is
considerably more useful than the original, then it’s worth copylefting your work,
for all the same reasons we normally recommend copyleft. If you are in this
situation, please follow the recommendations below for licensing a new
project.

 If you choose to release your contributions under a different license for whatever
reason, you must make sure that the original license allows use of the material
under your chosen license. For honesty’s sake, show explicitly which parts of the
work are under which license.

 Software

 We recommend different licenses for different projects, depending mostly on the
software’s purpose. In general, we recommend using the strongest copyleft license
that doesn’t interfere with that purpose. Our essay “What is Copyleft?” ([link])
explains the concept of copyleft in more detail, and why it is generally the best
licensing strategy.

 For most programs, we recommend that you use the most recent version of the
GNU General Public License (GPL) ([link]) for your project. Its strong copyleft is
appropriate for all kinds of software, and includes numerous protections for users’
freedom.

 Now for the exceptions.

 Small Programs

 It is not worth the trouble to use copyleft for most small programs. We use 300
lines as our benchmark: when a software package’s source code is shorter than
that, the benefits provided by copyleft are usually too small to justify the
inconvenience of making sure a copy of the license always accompanies the
software.

 For those programs, we recommend the Apache License 2.0. [3] This is a pushover
(noncopyleft) software license that has terms to prevent contributors and
distributors from suing for patent infringement. This doesn’t make the software
immune to threats from patents (a software license can’t do that), but it does
prevent patent holders from setting up a “bait and switch” where they release the
software under free terms then require recipients to agree to nonfree terms in a
patent license.

 Among the lax pushover licenses, Apache 2.0 is best; so if you are going to use
a lax pushover license, whatever the reason, we recommend using that
one.

 Libraries

 For libraries, we distinguish three kind of cases.

 Some libraries implement free standards that are competing against
restricted standards, such as Ogg Vorbis (which competes against MP3
audio) and WebM (which competes against MPEG-4 video). For these
projects, widespread use of the code is vital for advancing the cause of free
software, and does more good than a copyleft on the project’s code would
do.

 In these special situations, we recommend the Apache License 2.0.

 For all other libraries, we recommend some kind of copyleft. If developers are
already using an established alternative library released under a nonfree license or a
lax pushover license, then we recommend using the GNU Lesser General Public
License (LGPL) ([link]).

 Unlike the first case, where the library implements an ethically superior
standard, here adoption for its own sake will not accomplish any special objective
goal, so there’s no reason to avoid copyleft entirely. However, if you require
developers who use your library to release their whole programs under copyleft,
they’ll simply use one of the alternatives available, and that won’t advance our
cause either. The Lesser GPL was designed to fill the middle ground between these
cases, allowing proprietary software developers to use the covered library, but
providing a weak copyleft that gives users freedom regarding the library code
itself.

 For libraries that provide specialized facilities, and which do not face entrenched
noncopylefted or nonfree competition, we recommend using the plain GNU GPL.
For the reasons why, read “Why You Shouldn’t Use the Lesser GPL for Your Next
Library,” at http://gnu.org/licenses/why-not-lgpl.html.

 Server Software

 If it is likely that others will make improved versions of your program to run on
servers and not distribute their versions to anyone else, and you’re concerned that
this will put your released version at a disadvantage, we recommend the GNU
Affero General Public License (AGPL). [4] The AGPL’s terms are almost identical to
the GPL’s; the sole substantive difference is that it has an extra condition to ensure

that people who use the software over a network will be able to get the source code
for it.

 The AGPL’s requirement doesn’t address the problems that can arise for users
when they entrust their computing or their data to someone else’s server. For
instance, it won’t stop Service as a Software Substitute (SaaSS) from denying users’
freedom [5] —but most servers don’t do SaaSS. For more about these issues, read
“Why the Affero GPL,” at http://gnu.org/licenses/why-affero-gpl.html.

 Documentation

 We recommend the GNU Free Documentation License ([link]) for tutorials,
reference manuals and other large works of documentation. It’s a strong copyleft
license for educational works, initially written for software manuals, and includes
terms which specifically address common issues that arise when those works are
distributed or modified.

 For short, secondary documentation works, such as a reference card, it is better
to use the GNU all-permissive license, [6] since a copy of the GFDL could hardly fit
in a reference card. Don’t use CC-BY, since it is incompatible with the
GFDL.

 For man pages, we recommend the GFDL if the page is long, and the GNU
all-permissive license if it is short.

 Some documentation includes software source code. For instance, a manual for a
programming language might include examples for readers to follow. You
should both include these in the manual under the FDL’s terms, and release
them under another license that’s appropriate for software. Doing so helps
make it easy to use the code in other projects. We recommend that you
dedicate small pieces of code to the public domain using CC0, [7] and distribute
larger pieces under the same license that the associated software project
uses.

 Other Data for Programs

 This section discusses all other works for practical use that you might include
with software. To give you some examples, this includes icons and other functional
or useful graphics, fonts, and geographic data. You can also follow them for art,
though we wouldn’t criticize if you don’t.

 If you are creating these works specifically for use with a software project, we
generally recommend that you release your work under the same license as the
software. There is no problem in doing so with the licenses we have recommended:

GPLv3, LGPLv3, AGPLv3, and GPLv2 can all be applied to any kind of
work—not just software—that is copyrightable and has a clear preferred form
for modification. Using the same license as the software will help make
compliance easier for distributors, and avoids any doubt about potential
compatibility issues. Using a different free license may be appropriate if it
provides some specific practical benefit, like better cooperation with other free
projects.

 If your work is not being created for use with a particular software
project, or if it wouldn’t be appropriate to use the same license as the
project, then we only recommend that you choose a copyleft license that’s
appropriate for your work. We have some of these listed on our license
list. [8] If no license seems especially appropriate, the Creative Commons
Attribution-ShareAlike [9] license is a copyleft that can be used for many different
kinds of works.

 Endnotes

 [1] See our campaign against Digital Restrictions Management, at DefectiveByDesign.org.

 [2] At http://gnu.org/licenses/gpl-faq.html.

 [3] See http://apache.org/licenses/LICENSE-2.0 for the full text of the license.

 [4] See http://gnu.org/licenses/agpl.html for the full text of the license.

 [5] See “Who Does That Server Really Serve?” for more on the issue of SaaSS.

 [6] See http://gnu.org/licenses/license-list.html#GNUAllPermissive.

 [7] See http://creativecommons.org/about/cc0 for more on the license.

 [8] See http://gnu.org/licenses/license-list.html#OtherLicenses.

 [9] See http://gnu.org/licenses/license-list.html#ccbysa for more on using this
license.

 Chapter 27
The X Window System Trap

 Copyright © 1998, 1999, 2009 Richard Stallman
 This essay was originally published on http://gnu.org, in 1998. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

To
copyleft or not to copyleft? That is one of the major controversies in the free
software community. The idea of copyleft is that we should fight fire with
fire—that we should use copyright to make sure our code stays free. The
GNU General Public License (GNU GPL) is one example of a copyleft
license.

 Some free software developers prefer noncopyleft distribution. Noncopyleft
licenses such as the XFree86 and BSD licenses are based on the idea of never saying
no to anyone—not even to someone who seeks to use your work as the basis for
restricting other people. Noncopyleft licensing does nothing wrong, but it misses the
opportunity to actively protect our freedom to change and redistribute software. For
that, we need copyleft.

 For many years, the X Consortium was the chief opponent of copyleft. It exerted
both moral suasion and pressure to discourage free software developers from
copylefting their programs. It used moral suasion by suggesting that it is not nice to
say no. It used pressure through its rule that copylefted software could not be in the
X Distribution.

 Why did the X Consortium adopt this policy? It had to do with their conception
of success. The X Consortium defined success as popularity—specifically, getting
computer companies to use the X Window System. This definition put the
computer companies in the driver’s seat: whatever they wanted, the X Consortium
had to help them get it.

 Computer companies normally distribute proprietary software. They wanted free
software developers to donate their work for such use. If they had asked for this
directly, people would have laughed. But the X Consortium, fronting for them,
could present this request as an unselfish one. “Join us in donating our work to
proprietary software developers,” they said, suggesting that this is a noble form of
self-sacrifice. “Join us in achieving popularity,” they said, suggesting that it was not
even a sacrifice.

 But self-sacrifice is not the issue: tossing away the defense that copyleft provides,
which protects the freedom of the whole community, is sacrificing more than
yourself. Those who granted the X Consortium’s request entrusted the community’s
future to the goodwill of the X Consortium.

 This trust was misplaced. In its last year, the X Consortium made a plan to
restrict the forthcoming X11R6.4 release so that it would not be free software. They
decided to start saying no, not only to proprietary software developers, but to our

community as well.

 There is an irony here. If you said yes when the X Consortium asked you not
to use copyleft, you put the X Consortium in a position to license and
restrict its version of your program, along with the code for the core of
X.

 The X Consortium did not carry out this plan. Instead it closed down and
transferred X development to the Open Group, whose staff are now carrying out a
similar plan. To give them credit, when I asked them to release X11R6.4 under the
GNU GPL in parallel with their planned restrictive license, they were willing to
consider the idea. (They were firmly against staying with the old X11 distribution
terms.) Before they said yes or no to this proposal, it had already failed for another
reason: the XFree86 group followed the X Consortium’s old policy, and will not
accept copylefted software.

 In September 1998, several months after X11R6.4 was released with nonfree
distribution terms, the Open Group reversed its decision and rereleased it under the
same noncopyleft free software license that was used for X11R6.3. Thus, the Open
Group therefore eventually did what was right, but that does not alter the general
issue.

 Even if the X Consortium and the Open Group had never planned to restrict X,
someone else could have done it. Noncopylefted software is vulnerable from all
directions; it lets anyone make a nonfree version dominant, if he will invest sufficient
resources to add significantly important features using proprietary code.
Users who choose software based on technical characteristics, rather than
on freedom, could easily be lured to the nonfree version for short-term
convenience.

 The X Consortium and Open Group can no longer exert moral suasion by saying
that it is wrong to say no. This will make it easier to decide to copyleft your
X-related software.

 When you work on the core of X, on programs such as the X server, Xlib, and
Xt, there is a practical reason not to use copyleft. The X.org group does an
important job for the community in maintaining these programs, and the benefit of
copylefting our changes would be less than the harm done by a fork in development.
So it is better to work with them, and not copyleft our changes on these
programs. Likewise for utilities such as xset and xrdb, which are close to the
core of X and do not need major improvements. At least we know that the
X.org group has a firm commitment to developing these programs as free
software.

 The issue is different for programs outside the core of X: applications, window
managers, and additional libraries and widgets. There is no reason not to copyleft
them, and we should copyleft them.

 In case anyone feels the pressure exerted by the criteria for inclusion in the X
distributions, the GNU Project will undertake to publicize copylefted packages that
work with X. If you would like to copyleft something, and you worry that its
omission from the X distribution will impede its popularity, please ask us to
help.

 At the same time, it is better if we do not feel too much need for popularity.

When a businessman tempts you with “more popularity,” he may try to convince
you that his use of your program is crucial to its success. Don’t believe it! If
your program is good, it will find many users anyway; you don’t need to
feel desperate for any particular users, and you will be stronger if you do
not. You can get an indescribable sense of joy and freedom by responding,
“Take it or leave it—that’s no skin off my back.” Often the businessman
will turn around and accept the program with copyleft, once you call the
bluff.

 Friends, free software developers, don’t repeat old mistakes! If we do not copyleft
our software, we put its future at the mercy of anyone equipped with more resources
than scruples. With copyleft, we can defend freedom, not just for ourselves, but for
our whole community.

 Endnotes

 [1] See our campaign against Digital Restrictions Management, at DefectiveByDesign.org.

 [2] At http://gnu.org/licenses/gpl-faq.html.

 [3] See http://apache.org/licenses/LICENSE-2.0 for the full text of the license.

 [4] See http://gnu.org/licenses/agpl.html for the full text of the license.

 [5] See “Who Does That Server Really Serve?” for more on the issue of SaaSS.

 [6] See http://gnu.org/licenses/license-list.html#GNUAllPermissive.

 [7] See http://creativecommons.org/about/cc0 for more on the license.

 [8] See http://gnu.org/licenses/license-list.html#OtherLicenses.

 [9] See http://gnu.org/licenses/license-list.html#ccbysa for more on using this
license.

 Chapter 28
Programs Must Not Limit the Freedom to Run Them

 Copyright © 2012 Free Software Foundation, Inc.
 This essay was originally published on http://gnu.org, in 2012. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Free
software means software controlled by its users, rather than the reverse. Specifically,
it means the software comes with four essential freedoms that software users
deserve. [1] At the head of the list is freedom zero, the freedom to run the program as
you wish, in order to do what you wish.

 Some developers propose to place usage restrictions in software licenses to ban
using the program for certain purposes, but that would be a disastrous path. This
article explains why freedom zero must not be limited. Conditions to limit the use
of a program would achieve little of their aims, but could wreck the free software
community.

 First of all, let’s be clear what freedom zero means. It means that the
distribution of the software does not restrict how you use it. This doesn’t
make you exempt from laws. For instance, fraud is a crime in the US—a
law which I think is right and proper. Whatever the free software license
says, using a free program to carry out your fraud won’t shield you from
prosecution.

 A license condition against fraud would be superfluous in a country where
fraud is a crime. But why not a condition against using it for torture, a
practice that states frequently condone when carried out by the “security
forces”?

 A condition against torture would not work, because enforcement of any free
software license is done through the state. A state that wants to carry out torture
will ignore the license. When victims of US torture try suing the US government,
courts dismiss the cases on the grounds that their treatment is a national security
secret. If a software developer tried to sue the US government for using a
program for torture against the conditions of its license, that suit would be
dismissed too. In general, states are clever at making legal excuses for whatever
terrible things they want to do. Businesses with powerful lobbies can do it
too.

 What if the condition were against some specialized private activity? For
instance, PETA proposed a license that would forbid use of the software to cause
pain to animals with a spinal column. Or there might be a condition against using a
certain program to make or publish drawings of Mohammad. Or against its use in
experiments with embryonic stem cells. Or against using it to make unauthorized
copies of musical recordings.

 It is not clear these would be enforcible. Free software licenses are based on

copyright law, and trying to impose usage conditions that way is stretching what
copyright law permits, stretching it in a dangerous way. Would you like
books to carry license conditions about how you can use the information in
them?

 What if such conditions are legally enforcible—would that be good?

 The fact is, people have very different ethical ideas about the activities that
might be done using software. I happen to think those four unusual activities
are legitimate and should not be forbidden. In particular I support the
use of software for medical experiments on animals, and for processing
meat. I defend the human rights of animal right activists but I don’t agree
with them; I would not want PETA to get its way in restricting the use of
software.

 Since I am not a pacifist, I would also disagree with a “no military use”
provision. I condemn wars of aggression but I don’t condemn fighting back. In fact,
I have supported efforts to convince various armies to switch to free software, since
they can check it for back doors and surveillance features that could imperil
national security.

 Since I am not against business in general, I would oppose a restriction against
commercial use. A system that we could use only for recreation, hobbies and school
is off limits to much of what we do with computers.

 I’ve stated some of my views about other political issues, about activities that
are or aren’t unjust. Your views might differ, and that’s precisely the point. If we
accepted programs with usage restrictions as part of a free operating system such as
GNU, people would come up with lots of different usage restrictions. There would
be programs banned for use in meat processing, programs banned only for pigs,
programs banned only for cows, and programs limited to kosher foods. Someone
who hates spinach might write a program allowing use for processing any vegetable
except spinach, while a Popeye fan might allow use only for spinach. There would
be music programs allowed only for rap music, and others allowed only for classical
music.

 The result would be a system that you could not count on for any purpose. For
each task you wish to do, you’d have to check lots of licenses to see which parts of
your system are off limits for that task.

 How would users respond to that? I think most of them would use proprietary
systems. Allowing any usage restrictions whatsoever in free software would mainly
push users towards nonfree software. Trying to stop users from doing something
through usage restrictions in free software is as ineffective as pushing on an object
through a long, soft, straight piece of spaghetti.

 It is worse than ineffective; it is wrong too, because software developers should
not exercise such power over what users do. Imagine selling pens with conditions
about what you can write with them; that would be noisome, and we should not
stand for it. Likewise for general software. If you make something that is generally
useful, like a pen, people will use it to write all sorts of things, even horrible things
such as orders to torture a dissident; but you must not have the power to control
people’s activities through their pens. It is the same for a text editor, compiler or
kernel.

 You do have an opportunity to determine what your software can be used for:
when you decide what functionality to implement. You can write programs that
lend themselves mainly to uses you think are positive, and you have no obligation to
write any features that might lend themselves to activities you disapprove
of.

 The conclusion is clear: a program must not restrict what jobs its users do with
it. Freedom 0 must be complete. We need to stop torture, but we can’t do it
through software licenses. The proper job of software licenses is to establish and
protect users’ freedom.

 Endnotes

 [1] See “What Is Free Software?” ([link]) for the full definition of free software.

 Chapter 29
What Is Copyleft?

 Copyright © 1996–2009, 2013 Free Software Foundation, Inc.
 This essay was originally published on http://gnu.org, in 1996. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Copyleft
is a general method for making a program (or other work) free, and requiring all
modified and extended versions of the program to be free as well.

 The simplest way to make a program free software is to put it in the
public domain, uncopyrighted. This allows people to share the program and
their improvements, if they are so minded. But it also allows uncooperative
people to convert the program into proprietary software. They can make
changes, many or few, and distribute the result as a proprietary product.
People who receive the program in that modified form do not have the
freedom that the original author gave them; the middleman has stripped it
away.

 In the GNU Project, our aim is to give all users the freedom to redistribute and
change GNU software. If middlemen could strip off the freedom, we might have
many users, but those users would not have freedom. So instead of putting GNU
software in the public domain, we “copyleft” it. Copyleft says that anyone who
redistributes the software, with or without changes, must pass along the freedom
to further copy and change it. Copyleft guarantees that every user has
freedom.

 Copyleft also provides an incentive for other programmers to add to free
software. Important free programs such as the GNU C++ compiler exist only
because of this.

 Copyleft also helps programmers who want to contribute improvements to
free software get permission to do so. These programmers often work for
companies or universities that would do almost anything to get more money. A
programmer may want to contribute her changes to the community, but
her employer may want to turn the changes into a proprietary software
product.

 When we explain to the employer that it is illegal to distribute the improved
version except as free software, the employer usually decides to release it as free
software rather than throw it away.

 To copyleft a program, we first state that it is copyrighted; then we add
distribution terms, which are a legal instrument that gives everyone the rights to
use, modify, and redistribute the program’s code, or any program derived from it,
but only if the distribution terms are unchanged. Thus, the code and the freedoms
become legally inseparable.

 Proprietary software developers use copyright to take away the users’ freedom;

we use copyright to guarantee their freedom. That’s why we reverse the name,
changing “copyright” into “copyleft.”

 Copyleft is a way of using of the copyright on the program. It doesn’t mean
abandoning the copyright; in fact, doing so would make copyleft impossible. The
“left” in “copyleft” is not a reference to the verb “to leave”—only to the direction
which is the inverse of “right.”

 Copyleft is a general concept, and you can’t use a general concept directly; you
can only use a specific implementation of the concept. In the GNU Project, the
specific distribution terms that we use for most software are contained in the GNU
General Public License ([link]). The GNU General Public License is often called the
GNU GPL for short. There is also a Frequently Asked Questions page about the
GNU GPL, at http://gnu.org/licenses/gpl-faq.html. You can also
read about why the FSF gets copyright assignments from contributors, at
http://gnu.org/copyleft/why-assign.html.

 An alternate form of copyleft, the GNU Affero General Public License (AGPL),
is designed for programs that are likely to be used on servers. It ensures that
modified versions used to implement services available to the public are released as
source code to the public.

 An alternate form of copyleft, the GNU Lesser General Public License (LGPL)
([link]), applies to a few (but not all) GNU libraries. To learn more about properly using
the LGPL, please read the article “Why You Shouldn’t Use the Lesser GPL for Your
Next Library,” available at http://gnu.org/philosophy/why-not-lgpl.html.

 The GNU Free Documentation License (FDL) ([link]) is a form of copyleft
intended for use on a manual, textbook or other document to assure everyone the
effective freedom to copy and redistribute it, with or without modifications, either
commercially or noncommercially.

 The appropriate license is included in many manuals and in each GNU source
code distribution.

 All these licenses are designed so that you can easily apply them to your own
works, assuming you are the copyright holder. You don’t have to modify the license
to do this, just include a copy of the license in the work, and add notices in the
source files that refer properly to the license.

 Using the same distribution terms for many different programs makes it easy to
copy code between various different programs. When they all have the same
distribution terms, there is no problem. The Lesser GPL, version 2, includes a
provision that lets you alter the distribution terms to the ordinary GPL, so that you
can copy code into another program covered by the GPL. Version 3 of the Lesser
GPL is built as an exception added to GPL version 3, making the compatibility
automatic.

 If you would like to copyleft your program with the GNU GPL or the GNU LGPL,
please see the license instructions page, at http://gnu.org/copyleft/gpl-howto.html,
for advice. Please note that you must use the entire text of the license you choose.
Each is an integral whole, and partial copies are not permitted.

 If you would like to copyleft your manual with the GNU FDL, please see the
instructions at the end of the FDL text ([link]), and the GFDL instructions page, at
http://gnu.org/copyleft/fdl-howto.html. Again, partial copies are not

permitted.

 It is a legal mistake to use a backwards C in a circle instead of a copyright
symbol. Copyleft is based legally on copyright, so the work should have a copyright
notice. A copyright notice requires either the copyright symbol (a C in a circle) or
the word “Copyright.”

 A backwards C in a circle has no special legal significance, so it doesn’t make a
copyright notice. It may be amusing in book covers, posters, and such, but be
careful how you represent it in a web page!

 Endnotes

 [1] See “What Is Free Software?” ([link]) for the full definition of free software.

 Chapter 30
Why Copyleft?

Copyright © 2003, 2007, 2008, 2013 Free Software Foundation, Inc.
 This essay was originally published on http://gnu.org, in 2003. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 When it comes to defending the freedom of others, to lie down and do
 nothing is an act of weakness, not humility.

In the GNU Project we usually recommend people use copyleft [1] licenses like GNU
GPL, rather than permissive noncopyleft free software licenses. We don’t argue
harshly against the noncopyleft licenses—in fact, we occasionally recommend them
in special circumstances—but the advocates of those licenses show a pattern of
arguing harshly against the GPL.

 In one such argument, a person stated that his use of one of the BSD licenses
was an “act of humility”: “I ask nothing of those who use my code, except to credit
me.” It is rather a stretch to describe a legal demand for credit as “humility,” but
there is a deeper point to be considered here.

 Humility is abnegating your own self interest, but you and the one who
uses your code are not the only ones affected by your choice of which free
software license to use for your code. Someone who uses your code in a
nonfree program is trying to deny freedom to others, and if you let him do it,
you’re failing to defend their freedom. When it comes to defending the
freedom of others, to lie down and do nothing is an act of weakness, not
humility.

 Releasing your code under one of the BSD licenses, or some other permissive
noncopyleft license, is not doing wrong; the program is still free software,
and still a contribution to our community. But it is weak, and in most
cases it is not the best way to promote users’ freedom to share and change
software.

 Endnotes

 [1] See “What Is Copyleft?” ([link]).

 Chapter 31
Copyleft: Pragmatic Idealism

 Copyright © 1998, 2003 Free Software Foundation, Inc.
 This version of this essay is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Every
decision a person makes stems from the person’s values and goals. People can have
many different goals and values; fame, profit, love, survival, fun, and freedom, are
just some of the goals that a good person might have. When the goal is a matter of
principle, we call that idealism.

 My work on free software is motivated by an idealistic goal: spreading freedom
and cooperation. I want to encourage free software to spread, replacing
proprietary software that forbids cooperation, and thus make our society
better. [1]

 That’s the basic reason why the GNU General Public License is written the way
it is—as a copyleft. All code added to a GPL-covered program must be free
software, even if it is put in a separate file. I make my code available for use in free
software, and not for use in proprietary software, in order to encourage other people
who write software to make it free as well. I figure that since proprietary software
developers use copyright to stop us from sharing, we cooperators can use
copyright to give other cooperators an advantage of their own: they can use our
code.

 Not everyone who uses the GNU GPL has this goal. Many years ago, a friend of
mine was asked to rerelease a copylefted program under noncopyleft terms, and he
responded more or less like this: “Sometimes I work on free software, and sometimes
I work on proprietary software—but when I work on proprietary software, I expect
to get paid.”

 He was willing to share his work with a community that shares software, but saw
no reason to give a handout to a business making products that would be off-limits
to our community. His goal was different from mine, but he decided that the GNU
GPL was useful for his goal too.

 If you want to accomplish something in the world, idealism is not enough—you
need to choose a method that works to achieve the goal. In other words, you need to
be “pragmatic.” Is the GPL pragmatic? Let’s look at its results.

 Consider GNU C++. Why do we have a free C++ compiler? Only because the
GNU GPL said it had to be free. GNU C++ was developed by an industry
consortium, MCC, starting from the GNU C compiler. MCC normally makes its
work as proprietary as can be. But they made the C++ front end free software,
because the GNU GPL said that was the only way they could release it. The C++
front end included many new files, but since they were meant to be linked
with GCC, the GPL did apply to them. The benefit to our community is
evident.

 Consider GNU Objective C. NeXT initially wanted to make this front end
proprietary; they proposed to release it as .o files, and let users link them
with the rest of GCC, thinking this might be a way around the GPL’s
requirements. But our lawyer said that this would not evade the requirements,
that it was not allowed. And so they made the Objective C front end free
software.

 Those examples happened years ago, but the GNU GPL continues to bring us
more free software.

 Many GNU libraries are covered by the GNU Lesser General Public License, but
not all. One GNU library which is covered by the ordinary GNU GPL is Readline,
which implements command-line editing. I once found out about a nonfree program
which was designed to use Readline, and told the developer this was not
allowed. He could have taken command-line editing out of the program,
but what he actually did was rerelease it under the GPL. Now it is free
software.

 The programmers who write improvements to GCC (or Emacs, or Bash, or
Linux, or any GPL-covered program) are often employed by companies or
universities. When the programmer wants to return his improvements to
the community, and see his code in the next release, the boss may say,
“Hold on there—your code belongs to us! We don’t want to share it; we
have decided to turn your improved version into a proprietary software
product.”

 Here the GNU GPL comes to the rescue. The programmer shows the boss that
this proprietary software product would be copyright infringement, and the boss
realizes that he has only two choices: release the new code as free software, or not at
all. Almost always he lets the programmer do as he intended all along, and the code
goes into the next release.

 The GNU GPL is not Mr. Nice Guy. It says no to some of the things that people
sometimes want to do. There are users who say that this is a bad thing—that the
GPL “excludes” some proprietary software developers who “need to be brought into
the free software community.”

 But we are not excluding them from our community; they are choosing not to
enter. Their decision to make software proprietary is a decision to stay out
of our community. Being in our community means joining in cooperation
with us; we cannot “bring them into our community” if they don’t want to
join.

 What we can do is offer them an inducement to join. The GNU GPL is designed
to make an inducement from our existing software: “If you will make your software
free, you can use this code.” Of course, it won’t win ’em all, but it wins some of the
time.

 Proprietary software development does not contribute to our community, but its
developers often want handouts from us. Free software users can offer free software
developers strokes for the ego—recognition and gratitude—but it can be very
tempting when a business tells you, “Just let us put your package in our proprietary
program, and your program will be used by many thousands of people!” The
temptation can be powerful, but in the long run we are all better off if we resist

it.

 The temptation and pressure are harder to recognize when they come indirectly,
through free software organizations that have adopted a policy of catering to
proprietary software. The X Consortium (and its successor, the Open Group) offers
an example: funded by companies that made proprietary software, they strived for a
decade to persuade programmers not to use copyleft. When the Open Group tried
to make X11R6.4 nonfree software, [2] those of us who had resisted that pressure were
glad that we did.

 In September 1998, several months after X11R6.4 was released with nonfree
distribution terms, the Open Group reversed its decision and rereleased it
under the same noncopyleft free software license that was used for X11R6.3.
Thank you, Open Group—but this subsequent reversal does not invalidate
the conclusions we draw from the fact that adding the restrictions was
possible.

 Pragmatically speaking, thinking about greater long-term goals will strengthen
your will to resist this pressure. If you focus your mind on the freedom and
community that you can build by staying firm, you will find the strength to do it.
“Stand for something, or you will fall for anything.”

 And if cynics ridicule freedom, ridicule community…if “hard-nosed realists”
say that profit is the only ideal…just ignore them, and use copyleft all the
same.

 Endnotes

 [1] See “Why Copyleft?” ([link]).

 [2] For more on this, see “The X Window System Trap” ([link]).

 Chapter 32
The GNU General Public License

Version 3, 29 June 2007

 Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/ 51
Franklin St., Floor 5, Boston, MA 02110-1335, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

 Preamble

The GNU General Public License is a free, copyleft license for software and other
kinds of works.

 The licenses for most software and other practical works are designed to
take away your freedom to share and change the works. By contrast, the
GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program—to make sure it remains free
software for all its users. We, the Free Software Foundation, use the GNU
General Public License for most of our software; it applies also to any other
work released this way by its authors. You can apply it to your programs,
too.

 When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for them if you wish), that you receive
source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs, and that you know you can do these
things.

 To protect your rights, we need to prevent others from denying you these rights
or asking you to surrender the rights. Therefore, you have certain responsibilities if
you distribute copies of the software, or if you modify it: responsibilities to respect
the freedom of others.

 For example, if you distribute copies of such a program, whether gratis
or for a fee, you must pass on to the recipients the same freedoms that
you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 Developers that use the GNU GPL protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License giving you legal permission
to copy, distribute and/or modify it.

 For the developers’ and authors’ protection, the GPL clearly explains that there
is no warranty for this free software. For both users’ and authors’ sake,
the GPL requires that modified versions be marked as changed, so that
their problems will not be attributed erroneously to authors of previous
versions.

 Some devices are designed to deny users access to install or run modified
versions of the software inside them, although the manufacturer can do so. This is
fundamentally incompatible with the aim of protecting users’ freedom to change the
software. The systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those products. If
such problems arise substantially in other domains, we stand ready to extend this
provision to those domains in future versions of the GPL, as needed to protect the
freedom of users.

 Finally, every program is threatened constantly by software patents. States
should not allow patents to restrict development and use of software on
general-purpose computers, but in those that do, we wish to avoid the special
danger that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the
program non-free.

 The precise terms and conditions for copying, distribution and modification
follow.

 TERMS AND CONDITIONS

 	Definitions.
 “This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
 works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
 License. Each licensee is addressed as “you”. “Licensees” and “recipients”
 may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
 in a fashion requiring copyright permission, other than the making of an
 exact copy. The resulting work is called a “modified version” of the earlier
 work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
 on the Program.

To “propagate” a work means to do anything with it that, without
 permission, would make you directly or secondarily liable for infringement
 under applicable copyright law, except executing it on a computer or
 modifying a private copy. Propagation includes copying, distribution
 (with or without modification), making available to the public, and in
 some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
 parties to make or receive copies. Mere interaction with a user through
 a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the
 extent that it includes a convenient and prominently visible feature that
 (1) displays an appropriate copyright notice, and (2) tells the user that
 there is no warranty for the work (except to the extent that warranties
 are provided), that licensees may convey the work under this License,
 and how to view a copy of this License. If the interface presents a list of
 user commands or options, such as a menu, a prominent item in the list
 meets this criterion.

 	Source Code.
 The “source code” for a work means the preferred form of the work for
 making modifications to it. “Object code” means any non-source form of
 a work.

A “Standard Interface” means an interface that either is an official
 standard defined by a recognized standards body, or, in the case of
 interfaces specified for a particular programming language, one that is
 widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
 than the work as a whole, that (a) is included in the normal form of
 packaging a Major Component, but which is not part of that Major
 Component, and (b) serves only to enable use of the work with that
 Major Component, or to implement a Standard Interface for which an
 implementation is available to the public in source code form. A “Major
 Component”, in this context, means a major essential component (kernel,
 window system, and so on) of the specific operating system (if any) on
 which the executable work runs, or a compiler used to produce the work,
 or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the
 source code needed to generate, install, and (for an executable work) run
 the object code and to modify the work, including scripts to control those
 activities. However, it does not include the work’s System Libraries, or
 general-purpose tools or generally available free programs which are used
 unmodified in performing those activities but which are not part of the
 work. For example, Corresponding Source includes interface definition
 files associated with source files for the work, and the source code for

 shared libraries and dynamically linked subprograms that the work is
 specifically designed to require, such as by intimate data communication
 or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can
 regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
 work.

 	Basic Permissions.
 All rights granted under this License are granted for the term of copyright
 on the Program, and are irrevocable provided the stated conditions are
 met. This License explicitly affirms your unlimited permission to run
 the unmodified Program. The output from running a covered work is
 covered by this License only if the output, given its content, constitutes a
 covered work. This License acknowledges your rights of fair use or other
 equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey,
 without conditions so long as your license otherwise remains in force. You
 may convey covered works to others for the sole purpose of having them
 make modifications exclusively for you, or provide you with facilities for
 running those works, provided that you comply with the terms of this
 License in conveying all material for which you do not control copyright.
 Those thus making or running the covered works for you must do so
 exclusively on your behalf, under your direction and control, on terms
 that prohibit them from making any copies of your copyrighted material
 outside their relationship with you.

Conveying under any other circumstances is permitted solely under the
 conditions stated below. Sublicensing is not allowed; section 10 makes it
 unnecessary.

 	Protecting Users’ Legal Rights From Anti-Circumvention Law.
 No covered work shall be deemed part of an effective technological
 measure under any applicable law fulfilling obligations under article 11
 of the WIPO copyright treaty adopted on 20 December 1996, or similar
 laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
 circumvention of technological measures to the extent such circumvention
 is effected by exercising rights under this License with respect to the
 covered work, and you disclaim any intention to limit operation or
 modification of the work as a means of enforcing, against the work’s users,
 your or third parties’ legal rights to forbid circumvention of technological
 measures.

 	Conveying Verbatim Copies.
 You may convey verbatim copies of the Program’s source code as
 you receive it, in any medium, provided that you conspicuously and
 appropriately publish on each copy an appropriate copyright notice; keep
 intact all notices stating that this License and any non-permissive terms
 added in accord with section 7 apply to the code; keep intact all notices
 of the absence of any warranty; and give all recipients a copy of this
 License along with the Program.

You may charge any price or no price for each copy that you convey, and
 you may offer support or warranty protection for a fee.

 	Conveying Modified Source Versions.
 You may convey a work based on the Program, or the modifications to
 produce it from the Program, in the form of source code under the terms
 of section 4, provided that you also meet all of these conditions:

 	The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 	The work must carry prominent notices stating that it is released
 under this License and any conditions added under section 7. This
 requirement modifies the requirement in section 4 to “keep intact all
 notices”.

 	You must license the entire work, as a whole, under this License
 to anyone who comes into possession of a copy. This License will
 therefore apply, along with any applicable section 7 additional
 terms, to the whole of the work, and all its parts, regardless of how
 they are packaged. This License gives no permission to license the
 work in any other way, but it does not invalidate such permission if
 you have separately received it.

 	If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your work
 need not make them do so.

 A compilation of a covered work with other separate and independent works,
 which are not by their nature extensions of the covered work, and
 which are not combined with it such as to form a larger program,
 in or on a volume of a storage or distribution medium, is called an

 “aggregate” if the compilation and its resulting copyright are not used
 to limit the access or legal rights of the compilation’s users beyond
 what the individual works permit. Inclusion of a covered work in an
 aggregate does not cause this License to apply to the other parts of the
 aggregate.

 	Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms of
 sections 4 and 5, provided that you also convey the machine-readable
 Corresponding Source under the terms of this License, in one of these
 ways:

 	Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by
 the Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 	Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as long as
 you offer spare parts or customer support for that product model,
 to give anyone who possesses the object code either (1) a copy
 of the Corresponding Source for all the software in the product
 that is covered by this License, on a durable physical medium
 customarily used for software interchange, for a price no more
 than your reasonable cost of physically performing this conveying
 of source, or (2) access to copy the Corresponding Source from a
 network server at no charge.

 	Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This alternative
 is allowed only occasionally and noncommercially, and only if you
 received the object code with such an offer, in accord with subsection
 6b.

 	Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place
 at no further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place
 to copy the object code is a network server, the Corresponding

 Source may be on a different server (operated by you or a third
 party) that supports equivalent copying facilities, provided you
 maintain clear directions next to the object code saying where to
 find the Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 	Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded from
 the Corresponding Source as a System Library, need not be included in
 conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
 tangible personal property which is normally used for personal, family, or
 household purposes, or (2) anything designed or sold for incorporation into a
 dwelling. In determining whether a product is a consumer product, doubtful
 cases shall be resolved in favor of coverage. For a particular product received
 by a particular user, “normally used” refers to a typical or common use of that
 class of product, regardless of the status of the particular user or of the way in
 which the particular user actually uses, or expects or is expected to use, the
 product. A product is a consumer product regardless of whether the
 product has substantial commercial, industrial or non-consumer uses,
 unless such uses represent the only significant mode of use of the
 product.

“Installation Information” for a User Product means any methods, procedures,
 authorization keys, or other information required to install and execute
 modified versions of a covered work in that User Product from a modified
 version of its Corresponding Source. The information must suffice to ensure
 that the continued functioning of the modified object code is in no case
 prevented or interfered with solely because modification has been
 made.

If you convey an object code work under this section in, or with, or specifically
 for use in, a User Product, and the conveying occurs as part of a
 transaction in which the right of possession and use of the User Product is
 transferred to the recipient in perpetuity or for a fixed term (regardless
 of how the transaction is characterized), the Corresponding Source
 conveyed under this section must be accompanied by the Installation
 Information. But this requirement does not apply if neither you nor
 any third party retains the ability to install modified object code
 on the User Product (for example, the work has been installed in
 ROM).

The requirement to provide Installation Information does not include a
 requirement to continue to provide support service, warranty, or updates for a
 work that has been modified or installed by the recipient, or for the User
 Product in which it has been modified or installed. Access to a network may
 be denied when the modification itself materially and adversely affects the
 operation of the network or violates the rules and protocols for communication
 across the network.

Corresponding Source conveyed, and Installation Information provided, in
 accord with this section must be in a format that is publicly documented (and
 with an implementation available to the public in source code form), and
 must require no special password or key for unpacking, reading or
 copying.

 	Additional Terms.
 “Additional permissions” are terms that supplement the terms of this License
 by making exceptions from one or more of its conditions. Additional
 permissions that are applicable to the entire Program shall be treated as
 though they were included in this License, to the extent that they are valid
 under applicable law. If additional permissions apply only to part of the
 Program, that part may be used separately under those permissions, but the
 entire Program remains governed by this License without regard to the
 additional permissions.

When you convey a copy of a covered work, you may at your option remove
 any additional permissions from that copy, or from any part of it. (Additional
 permissions may be written to require their own removal in certain cases when
 you modify the work.) You may place additional permissions on material,
 added by you to a covered work, for which you have or can give appropriate
 copyright permission.

Notwithstanding any other provision of this License, for material
 you add to a covered work, you may (if authorized by the copyright
 holders of that material) supplement the terms of this License with
 terms:

 	Disclaiming warranty or limiting liability differently from the terms
 of sections 15 and 16 of this License; or

 	Requiring preservation of specified reasonable legal notices or author
 attributions in that material or in the Appropriate Legal Notices
 displayed by works containing it; or

 	Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in

 reasonable ways as different from the original version; or

 	Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 	Declining to grant rights under trademark law for use of some trade
 names, trademarks, or service marks; or

 	Requiring indemnification of licensors and authors of that material
 by anyone who conveys the material (or modified versions of it)
 with contractual assumptions of liability to the recipient, for any
 liability that these contractual assumptions directly impose on those
 licensors and authors.

 All other non-permissive additional terms are considered “further restrictions”
 within the meaning of section 10. If the Program as you received it, or
 any part of it, contains a notice stating that it is governed by this
 License along with a term that is a further restriction, you may remove
 that term. If a license document contains a further restriction but
 permits relicensing or conveying under this License, you may add to a
 covered work material governed by the terms of that license document,
 provided that the further restriction does not survive such relicensing or
 conveying.

If you add terms to a covered work in accord with this section, you must
 place, in the relevant source files, a statement of the additional terms that
 apply to those files, or a notice indicating where to find the applicable
 terms.

Additional terms, permissive or non-permissive, may be stated in the form of
 a separately written license, or stated as exceptions; the above requirements
 apply either way.

 	Termination.
 You may not propagate or modify a covered work except as expressly provided
 under this License. Any attempt otherwise to propagate or modify it is
 void, and will automatically terminate your rights under this License
 (including any patent licenses granted under the third paragraph of section
 11).

However, if you cease all violation of this License, then your license from a
 particular copyright holder is reinstated (a) provisionally, unless and until
 the copyright holder explicitly and finally terminates your license,
 and (b) permanently, if the copyright holder fails to notify you of
 the violation by some reasonable means prior to 60 days after the
 cessation.

Moreover, your license from a particular copyright holder is reinstated
 permanently if the copyright holder notifies you of the violation by some
 reasonable means, this is the first time you have received notice of
 violation of this License (for any work) from that copyright holder,
 and you cure the violation prior to 30 days after your receipt of the
 notice.

Termination of your rights under this section does not terminate the licenses
 of parties who have received copies or rights from you under this License. If
 your rights have been terminated and not permanently reinstated, you do not
 qualify to receive new licenses for the same material under section
 10.

 	Acceptance Not Required for Having Copies.
 You are not required to accept this License in order to receive or run a copy of
 the Program. Ancillary propagation of a covered work occurring solely as a
 consequence of using peer-to-peer transmission to receive a copy likewise does
 not require acceptance. However, nothing other than this License grants you
 permission to propagate or modify any covered work. These actions infringe
 copyright if you do not accept this License. Therefore, by modifying or
 propagating a covered work, you indicate your acceptance of this License to do
 so.

 	Automatic Licensing of Downstream Recipients.
 Each time you convey a covered work, the recipient automatically receives a
 license from the original licensors, to run, modify and propagate that work,
 subject to this License. You are not responsible for enforcing compliance by
 third parties with this License.

An “entity transaction” is a transaction transferring control of an organization,
 or substantially all assets of one, or subdividing an organization, or merging
 organizations. If propagation of a covered work results from an entity
 transaction, each party to that transaction who receives a copy of the work
 also receives whatever licenses to the work the party’s predecessor in
 interest had or could give under the previous paragraph, plus a right to
 possession of the Corresponding Source of the work from the predecessor
 in interest, if the predecessor has it or can get it with reasonable
 efforts.

You may not impose any further restrictions on the exercise of the rights
 granted or affirmed under this License. For example, you may not impose a
 license fee, royalty, or other charge for exercise of rights granted under this
 License, and you may not initiate litigation (including a cross-claim or
 counterclaim in a lawsuit) alleging that any patent claim is infringed by
 making, using, selling, offering for sale, or importing the Program or any
 portion of it.

 	Patents.
 A “contributor” is a copyright holder who authorizes use under this License of
 the Program or a work on which the Program is based. The work thus licensed
 is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or
 controlled by the contributor, whether already acquired or hereafter acquired,
 that would be infringed by some manner, permitted by this License, of
 making, using, or selling its contributor version, but do not include claims
 that would be infringed only as a consequence of further modification of the
 contributor version. For purposes of this definition, “control” includes the right
 to grant patent sublicenses in a manner consistent with the requirements of
 this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
 license under the contributor’s essential patent claims, to make, use, sell, offer
 for sale, import and otherwise run, modify and propagate the contents of its
 contributor version.

In the following three paragraphs, a “patent license” is any express agreement
 or commitment, however denominated, not to enforce a patent (such as an
 express permission to practice a patent or covenant not to sue for patent
 infringement). To “grant” such a patent license to a party means to make such
 an agreement or commitment not to enforce a patent against the
 party.

If you convey a covered work, knowingly relying on a patent license, and the
 Corresponding Source of the work is not available for anyone to copy, free of
 charge and under the terms of this License, through a publicly available
 network server or other readily accessible means, then you must either (1)
 cause the Corresponding Source to be so available, or (2) arrange to deprive
 yourself of the benefit of the patent license for this particular work, or (3)
 arrange, in a manner consistent with the requirements of this License, to
 extend the patent license to downstream recipients. “Knowingly relying”
 means you have actual knowledge that, but for the patent license,
 your conveying the covered work in a country, or your recipient’s
 use of the covered work in a country, would infringe one or more
 identifiable patents in that country that you have reason to believe are
 valid.

If, pursuant to or in connection with a single transaction or arrangement, you
 convey, or propagate by procuring conveyance of, a covered work, and grant
 a patent license to some of the parties receiving the covered work
 authorizing them to use, propagate, modify or convey a specific copy of
 the covered work, then the patent license you grant is automatically
 extended to all recipients of the covered work and works based on
 it.

A patent license is “discriminatory” if it does not include within the scope of

 its coverage, prohibits the exercise of, or is conditioned on the non-exercise of
 one or more of the rights that are specifically granted under this License. You
 may not convey a covered work if you are a party to an arrangement with a
 third party that is in the business of distributing software, under
 which you make payment to the third party based on the extent of
 your activity of conveying the work, and under which the third party
 grants, to any of the parties who would receive the covered work from
 you, a discriminatory patent license (a) in connection with copies
 of the covered work conveyed by you (or copies made from those
 copies), or (b) primarily for and in connection with specific products or
 compilations that contain the covered work, unless you entered into that
 arrangement, or that patent license was granted, prior to 28 March
 2007.

Nothing in this License shall be construed as excluding or limiting any implied
 license or other defenses to infringement that may otherwise be available to
 you under applicable patent law.

 	No Surrender of Others’ Freedom.
 If conditions are imposed on you (whether by court order, agreement or
 otherwise) that contradict the conditions of this License, they do not excuse
 you from the conditions of this License. If you cannot convey a covered work
 so as to satisfy simultaneously your obligations under this License
 and any other pertinent obligations, then as a consequence you may
 not convey it at all. For example, if you agree to terms that obligate
 you to collect a royalty for further conveying from those to whom
 you convey the Program, the only way you could satisfy both those
 terms and this License would be to refrain entirely from conveying the
 Program.

 	Use with the GNU Affero General Public License.
 Notwithstanding any other provision of this License, you have permission to
 link or combine any covered work with a work licensed under version 3
 of the GNU Affero General Public License into a single combined
 work, and to convey the resulting work. The terms of this License will
 continue to apply to the part which is the covered work, but the special
 requirements of the GNU Affero General Public License, section 13,
 concerning interaction through a network will apply to the combination as
 such.

 	Revised Versions of this License.
 The Free Software Foundation may publish revised and/or new versions of the
 GNU General Public License from time to time. Such new versions will be
 similar in spirit to the present version, but may differ in detail to address new

 problems or concerns.

Each version is given a distinguishing version number. If the Program
 specifies that a certain numbered version of the GNU General Public
 License “or any later version” applies to it, you have the option of
 following the terms and conditions either of that numbered version or of
 any later version published by the Free Software Foundation. If the
 Program does not specify a version number of the GNU General Public
 License, you may choose any version ever published by the Free Software
 Foundation.

If the Program specifies that a proxy can decide which future versions of the
 GNU General Public License can be used, that proxy’s public statement of
 acceptance of a version permanently authorizes you to choose that version for
 the Program.

Later license versions may give you additional or different permissions.
 However, no additional obligations are imposed on any author or copyright
 holder as a result of your choosing to follow a later version.

 	Disclaimer of Warranty.
 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
 EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
 AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
 WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
 IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
 QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
 YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
 ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
 CORRECTION.

 	Limitation of Liability.
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
 AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
 ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
 PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
 DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
 CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
 INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
 LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
 INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
 OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
 OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER

 PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGES.

 	Interpretation of Sections 15 and 16.
 If the disclaimer of warranty and limitation of liability provided above cannot
 be given local legal effect according to their terms, reviewing courts shall
 apply local law that most closely approximates an absolute waiver of all
 civil liability in connection with the Program, unless a warranty or
 assumption of liability accompanies a copy of the Program in return for a
 fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively state the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full
notice is found.

 one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses/.

 Also add information on how to contact you by electronic and paper
mail.

 If the program does terminal interaction, make it output a short notice like this
when it starts in an interactive mode:

 program Copyright (C) year name of author This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is free software, and you are
welcome to redistribute it under certain conditions; type ‘show c’ for details.

 The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, your program’s
commands might be different; for a GUI interface, you would use an “about
box”.

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
http://www.gnu.org/licenses/.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.
But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

 Endnotes

 [1] See “Why Copyleft?” ([link]).

 [2] For more on this, see “The X Window System Trap” ([link]).

 Chapter 33
Why Upgrade to GPLv3

 Copyright © 2007, 2009 Richard Stallman
 This essay was originally published on http://gnu.org, in 2007. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Version 3
of the GNU General Public License (GNU GPL) has been released, enabling free
software packages to upgrade from GPL version 2. This article explains why
upgrading the license is important.

 First of all, it is important to note that upgrading is a choice. GPL version 2 will
remain a valid license, and no disaster will happen if some programs remain under
GPLv2 while others advance to GPLv3. These two licenses are incompatible, but
that isn’t a fundamental problem.

 When we say that GPLv2 and GPLv3 are incompatible, it means there is no
legal way to combine code under GPLv2 with code under GPLv3 in a single
program. This is because both GPLv2 and GPLv3 are copyleft licenses: each
of them says, “If you include code under this license in a larger program,
the larger program must be under this license too.” There is no way to
make them compatible. We could add a GPLv2-compatibility clause to
GPLv3, but it wouldn’t do the job, because GPLv2 would need a similar
clause.

 Fortunately, license incompatibility matters only when you want to link,
merge or combine code from two different programs into a single program.
There is no problem in having GPLv3-covered and GPLv2-covered programs
side by side in an operating system. For instance, the TEX license and the
Apache license are incompatible with GPLv2, but that doesn’t stop us
from running TEX and Apache in the same system with Linux, Bash and
GCC. This is because they are all separate programs. Likewise, if Bash
and GCC move to GPLv3, while Linux remains under GPLv2, there is no
conflict.

 Keeping a program under GPLv2 won’t create problems. The reason to migrate
is because of the existing problems that GPLv3 will address.

 One major danger that GPLv3 will block is tivoization. Tivoization means
certain “appliances” (which have computers inside) contain GPL-covered software
that you can’t effectively change, because the appliance shuts down if it detects
modified software. The usual motive for tivoization is that the software has
features the manufacturer knows people will want to change, and aims to stop
people from changing them. The manufacturers of these computers take
advantage of the freedom that free software provides, but they don’t let you do
likewise.

 Some argue that competition between appliances in a free market should suffice

to keep nasty features to a low level. Perhaps competition alone would avoid
arbitrary, pointless misfeatures like “Must shut down between 1pm and 5pm every
Tuesday,” but even so, a choice of masters isn’t freedom. Freedom means you
control what your software does, not merely that you can beg or threaten someone
else who decides for you.

 In the crucial area of Digital Restrictions Management (DRM)—nasty features
designed to restrict your use of the data in your computer—competition is no help,
because relevant competition is forbidden. Under the Digital Millennium Copyright
Act and similar laws, it is illegal, in the US and many other countries, to
distribute DVD players unless they restrict the user according to the official
rules of the DVD conspiracy (its web site is http://www.dvdcca.org/,
but the rules do not seem to be published there). The public can’t reject
DRM by buying non-DRM players because none are available. No matter
how many products you can choose from, they all have equivalent digital
handcuffs.

 GPLv3 ensures you are free to remove the handcuffs. It doesn’t forbid DRM, or
any kind of feature. It places no limits on the substantive functionality you can add
to a program, or remove from it. Rather, it makes sure that you are just as free to
remove nasty features as the distributor of your copy was to add them. Tivoization
is the way they deny you that freedom; to protect your freedom, GPLv3 forbids
tivoization.

 The ban on tivoization applies to any product whose use by consumers is to be
expected, even occasionally. GPLv3 tolerates tivoization only for products that are
almost exclusively meant for businesses and organizations.

 Another threat that GPLv3 resists is that of patent deals like the Novell-Microsoft
pact. Microsoft wants to use its thousands of patents to make users pay Microsoft
for the privilege of running GNU/Linux, and made this pact to try to achieve that.
The deal offers rather limited protection from Microsoft patents to Novell’s
customers.

 Microsoft made a few mistakes in the Novell-Microsoft deal, and GPLv3 is
designed to turn them against Microsoft, extending that limited patent protection
to the whole community. In order to take advantage of this protection, programs
need to use GPLv3.

 Microsoft’s lawyers are not stupid, and next time they may manage to
avoid those mistakes. GPLv3 therefore says they don’t get a “next time.”
Releasing a program under GPL version 3 protects it from Microsoft’s future
attempts to make redistributors collect Microsoft royalties from the program’s
users.

 GPLv3 also provides users with explicit patent protection from the
program’s contributors and redistributors. With GPLv2, users rely on an
implicit patent license to make sure that the company which provided them a
copy won’t sue them, or the people they redistribute copies to, for patent
infringement.

 The explicit patent license in GPLv3 does not go as far as we might have liked.
Ideally, we would make everyone who redistributes GPL-covered code give up all
software patents, along with everyone who does not redistribute GPL-covered

code, because there should be no software patents. Software patents are a
vicious and absurd system that puts all software developers in danger of
being sued by companies they have never heard of, as well as by all the
megacorporations in the field. Large programs typically combine thousands
of ideas, so it is no surprise if they implement ideas covered by hundreds
of patents. Megacorporations collect thousands of patents, and use those
patents to bully smaller developers. Patents already obstruct free software
development.

 The only way to make software development safe is to abolish software patents,
and we aim to achieve this some day. But we cannot do this through a software
license. Any program, free or not, can be killed by a software patent in the
hands of an unrelated party, and the program’s license cannot prevent
that. Only court decisions or changes in patent law can make software
development safe from patents. If we tried to do this with GPLv3, it would
fail.

 Therefore, GPLv3 seeks to limit and channel the danger. In particular, we have
tried to save free software from a fate worse than death: to be made effectively
proprietary, through patents. The explicit patent license of GPLv3 makes
sure companies that use the GPL to give users the four freedoms cannot
turn around and use their patents to tell some users, “That doesn’t include
you.” It also stops them from colluding with other patent holders to do
this.

 Further advantages of GPLv3 include better internationalization, gentler
termination, support for BitTorrent, and compatibility with the Apache license. All
in all, plenty of reason to upgrade.

 Change is unlikely to cease once GPLv3 is released. If new threats to users’
freedom develop, we will have to develop GPL version 4. It is important to make
sure that programs will have no trouble upgrading to GPLv4 if and when we write
one.

 One way to do this is to release a program under “GPL version 3 or
any later version.” Another way is for all the contributors to a program to
state a proxy who can decide on upgrading to future GPL versions. The
third way is for all the contributors to assign copyright to one designated
copyright holder, who will be in a position to upgrade the license version. One
way or another, programs should provide this flexibility for future GPL
versions.

 Endnotes

 [1] See “Why Copyleft?” ([link]).

 [2] For more on this, see “The X Window System Trap” ([link]).

 Chapter 34
The GNU Lesser General Public License

Version 3, 29 June 2007

 Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and
conditions of version 3 of the GNU General Public License, supplemented by the
additional permissions listed below.

 	Additional Definitions.
 As used herein, “this License” refers to version 3 of the GNU Lesser
 General Public License, and the “GNU GPL” refers to version 3 of the
 GNU General Public License.

“The Library” refers to a covered work governed by this License, other
 than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by
 the Library, but which is not otherwise based on the Library. Defining a
 subclass of a class defined by the Library is deemed a mode of using an
 interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
 Application with the Library. The particular version of the Library with
 which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the
 Corresponding Source for the Combined Work, excluding any source code
 for portions of the Combined Work that, considered in isolation, are
 based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
 object code and/or source code for the Application, including any data
 and utility programs needed for reproducing the Combined Work from
 the Application, but excluding the System Libraries of the Combined
 Work.

 	Exception to Section 3 of the GNU GPL.
 You may convey a covered work under sections 3 and 4 of this License
 without being bound by section 3 of the GNU GPL.

 	Conveying Modified Versions.
 If you modify a copy of the Library, and, in your modifications, a facility
 refers to a function or data to be supplied by an Application that uses the
 facility (other than as an argument passed when the facility is invoked),
 then you may convey a copy of the modified version:

 	under this License, provided that you make a good faith effort to
 ensure that, in the event an Application does not supply the function
 or data, the facility still operates, and performs whatever part of its
 purpose remains meaningful, or

 	under the GNU GPL, with none of the additional permissions of
 this License applicable to that copy.

 	Object Code Incorporating Material from Library Header
 Files.
 The object code form of an Application may incorporate material from a
 header file that is part of the Library. You may convey such object code under
 terms of your choice, provided that, if the incorporated material is not limited
 to numerical parameters, data structure layouts and accessors, or small
 macros, inline functions and templates (ten or fewer lines in length), you do
 both of the following:

 	Give prominent notice with each copy of the object code that the
 Library is used in it and that the Library and its use are covered
 by this License.

 	Accompany the object code with a copy of the GNU GPL and this
 license document.

 	Combined Works.
 You may convey a Combined Work under terms of your choice that, taken
 together, effectively do not restrict modification of the portions of the Library
 contained in the Combined Work and reverse engineering for debugging such
 modifications, if you also do each of the following:

 	Give prominent notice with each copy of the Combined Work that
 the Library is used in it and that the Library and its use are covered
 by this License.

 	Accompany the Combined Work with a copy of the GNU GPL and
 this license document.

 	For a Combined Work that displays copyright notices during
 execution, include the copyright notice for the Library among these
 notices, as well as a reference directing the user to the copies of the
 GNU GPL and this license document.

 	Do one of the following:

 	Convey the Minimal Corresponding Source under the terms
 of this License, and the Corresponding Application Code in a
 form suitable for, and under terms that permit, the user to
 recombine or relink the Application with a modified version
 of the Linked Version to produce a modified Combined Work,
 in the manner specified by section 6 of the GNU GPL for
 conveying Corresponding Source.

 	Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (a) uses at run time
 a copy of the Library already present on the user’s computer
 system, and (b) will operate properly with a modified version
 of the Library that is interface-compatible with the Linked
 Version.

 	Provide Installation Information, but only if you would otherwise be
 required to provide such information under section 6 of the GNU GPL,
 and only to the extent that such information is necessary to install and
 execute a modified version of the Combined Work produced by
 recombining or relinking the Application with a modified version
 of the Linked Version. (If you use option 4d0, the Installation
 Information must accompany the Minimal Corresponding Source
 and Corresponding Application Code. If you use option 4d1,
 you must provide the Installation Information in the manner
 specified by section 6 of the GNU GPL for conveying Corresponding
 Source.)

 	Combined Libraries.
 You may place library facilities that are a work based on the Library side by
 side in a single library together with other library facilities that are not
 Applications and are not covered by this License, and convey such a
 combined library under terms of your choice, if you do both of the
 following:

 	Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library facilities,

 conveyed under the terms of this License.

 	Give prominent notice with the combined library that part of it
 is a work based on the Library, and explaining where to find the
 accompanying uncombined form of the same work.

 	Revised Versions of the GNU Lesser General Public License.
 The Free Software Foundation may publish revised and/or new versions of the
 GNU Lesser General Public License from time to time. Such new versions will
 be similar in spirit to the present version, but may differ in detail to address
 new problems or concerns.

Each version is given a distinguishing version number. If the Library as you
 received it specifies that a certain numbered version of the GNU Lesser
 General Public License “or any later version” applies to it, you have the option
 of following the terms and conditions either of that published version or of any
 later version published by the Free Software Foundation. If the Library as
 you received it does not specify a version number of the GNU Lesser
 General Public License, you may choose any version of the GNU
 Lesser General Public License ever published by the Free Software
 Foundation.

If the Library as you received it specifies that a proxy can decide
 whether future versions of the GNU Lesser General Public License shall
 apply, that proxy’s public statement of acceptance of any version
 is permanent authorization for you to choose that version for the
 Library.

 Endnotes

 [1] See “Why Copyleft?” ([link]).

 [2] For more on this, see “The X Window System Trap” ([link]).

 Chapter 35
GNU Free Documentation License

Version 1.3, 3 November 2008

 Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

 	PREAMBLE
 The purpose of this License is to make a manual, textbook, or other
 functional and useful document free in the sense of freedom: to assure
 everyone the effective freedom to copy and redistribute it, with or without
 modifying it, either commercially or noncommercially. Secondarily, this
 License preserves for the author and publisher a way to get credit for
 their work, while not being considered responsible for modifications made
 by others.

This License is a kind of “copyleft”, which means that derivative works of
 the document must themselves be free in the same sense. It complements
 the GNU General Public License, which is a copyleft license designed for
 free software.

We have designed this License in order to use it for manuals for free
 software, because free software needs free documentation: a free program
 should come with manuals providing the same freedoms that the software
 does. But this License is not limited to software manuals; it can be
 used for any textual work, regardless of subject matter or whether it is
 published as a printed book. We recommend this License principally for
 works whose purpose is instruction or reference.

 	APPLICABILITY AND DEFINITIONS
 This License applies to any manual or other work, in any medium,
 that contains a notice placed by the copyright holder saying it can
 be distributed under the terms of this License. Such a notice grants a
 world-wide, royalty-free license, unlimited in duration, to use that work
 under the conditions stated herein. The “Document”, below, refers to
 any such manual or work. Any member of the public is a licensee, and
 is addressed as “you”. You accept the license if you copy, modify or
 distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
 Document or a portion of it, either copied verbatim, or with modifications
 and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
 of the Document that deals exclusively with the relationship of the
 publishers or authors of the Document to the Document’s overall subject
 (or to related matters) and contains nothing that could fall directly
 within that overall subject. (Thus, if the Document is in part a textbook
 of mathematics, a Secondary Section may not explain any mathematics.)
 The relationship could be a matter of historical connection with the
 subject or with related matters, or of legal, commercial, philosophical,
 ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
 designated, as being those of Invariant Sections, in the notice that says
 that the Document is released under this License. If a section does not fit
 the above definition of Secondary then it is not allowed to be designated
 as Invariant. The Document may contain zero Invariant Sections. If the
 Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
 Front-Cover Texts or Back-Cover Texts, in the notice that says that the
 Document is released under this License. A Front-Cover Text may be at
 most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
 represented in a format whose specification is available to the general
 public, that is suitable for revising the document straightforwardly with
 generic text editors or (for images composed of pixels) generic paint
 programs or (for drawings) some widely available drawing editor, and
 that is suitable for input to text formatters or for automatic translation
 to a variety of formats suitable for input to text formatters. A copy
 made in an otherwise Transparent file format whose markup, or absence
 of markup, has been arranged to thwart or discourage subsequent
 modification by readers is not Transparent. An image format is not
 Transparent if used for any substantial amount of text. A copy that is
 not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii
 without markup, Texinfo input format, LaTEX input format, SGML or
 XML using a publicly available DTD, and standard-conforming simple
 HTML, PostScript or PDF designed for human modification. Examples
 of transparent image formats include PNG, XCF and JPG. Opaque
 formats include proprietary formats that can be read and edited only by
 proprietary word processors, SGML or XML for which the DTD and/or
 processing tools are not generally available, and the machine-generated
 HTML, PostScript or PDF produced by some word processors for output
 purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
 following pages as are needed to hold, legibly, the material this License
 requires to appear in the title page. For works in formats which do not
 have any title page as such, “Title Page” means the text near the most
 prominent appearance of the work’s title, preceding the beginning of the
 body of the text.

The “publisher” means any person or entity that distributes copies of the
 Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
 title either is precisely XYZ or contains XYZ in parentheses following
 text that translates XYZ in another language. (Here XYZ stands for
 a specific section name mentioned below, such as “Acknowledgements”,
 “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of
 such a section when you modify the Document means that it remains a
 section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
 which states that this License applies to the Document. These Warranty
 Disclaimers are considered to be included by reference in this License,
 but only as regards disclaiming warranties: any other implication that
 these Warranty Disclaimers may have is void and has no effect on the
 meaning of this License.

 	VERBATIM COPYING
 You may copy and distribute the Document in any medium, either
 commercially or noncommercially, provided that this License, the
 copyright notices, and the license notice saying this License applies to
 the Document are reproduced in all copies, and that you add no other
 conditions whatsoever to those of this License. You may not use technical
 measures to obstruct or control the reading or further copying of the
 copies you make or distribute. However, you may accept compensation
 in exchange for copies. If you distribute a large enough number of copies
 you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
 you may publicly display copies.

 	COPYING IN QUANTITY
 If you publish printed copies (or copies in media that commonly have
 printed covers) of the Document, numbering more than 100, and the
 Document’s license notice requires Cover Texts, you must enclose the
 copies in covers that carry, clearly and legibly, all these Cover Texts:
 Front-Cover Texts on the front cover, and Back-Cover Texts on the
 back cover. Both covers must also clearly and legibly identify you as the
 publisher of these copies. The front cover must present the full title with

 all words of the title equally prominent and visible. You may add other
 material on the covers in addition. Copying with changes limited to the
 covers, as long as they preserve the title of the Document and satisfy
 these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
 should put the first ones listed (as many as fit reasonably) on the actual
 cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
 more than 100, you must either include a machine-readable Transparent
 copy along with each Opaque copy, or state in or with each Opaque
 copy a computer-network location from which the general network-using
 public has access to download using public-standard network protocols
 a complete Transparent copy of the Document, free of added material.
 If you use the latter option, you must take reasonably prudent steps,
 when you begin distribution of Opaque copies in quantity, to ensure that
 this Transparent copy will remain thus accessible at the stated location
 until at least one year after the last time you distribute an Opaque copy
 (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
 Document well before redistributing any large number of copies, to give
 them a chance to provide you with an updated version of the Document.

 	MODIFICATIONS
 You may copy and distribute a Modified Version of the Document under
 the conditions of sections 2 and 3 above, provided that you release
 the Modified Version under precisely this License, with the Modified
 Version filling the role of the Document, thus licensing distribution and
 modification of the Modified Version to whoever possesses a copy of it.
 In addition, you must do these things in the Modified Version:

 	Use in the Title Page (and on the covers, if any) a title distinct from
 that of the Document, and from those of previous versions (which
 should, if there were any, be listed in the History section of the
 Document). You may use the same title as a previous version if the
 original publisher of that version gives permission.

 	List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.

 	State on the Title page the name of the publisher of the Modified
 Version, as the publisher.

 	Preserve all the copyright notices of the Document.

 	Add an appropriate copyright notice for your modifications adjacent
 to the other copyright notices.

 	Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.

 	Preserve in that license notice the full lists of Invariant Sections and
 required Cover Texts given in the Document’s license notice.

 	Include an unaltered copy of this License.

 	Preserve the section Entitled “History”, Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If there
 is no section Entitled “History” in the Document, create one stating
 the title, year, authors, and publisher of the Document as given on
 its Title Page, then add an item describing the Modified Version as
 stated in the previous sentence.

 	Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the “History” section. You
 may omit a network location for a work that was published at least
 four years before the Document itself, or if the original publisher of
 the version it refers to gives permission.

 	For any section Entitled “Acknowledgements” or “Dedications”,
 Preserve the Title of the section, and preserve in the section all the
 substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.

 	Preserve all the Invariant Sections of the Document, unaltered in
 their text and in their titles. Section numbers or the equivalent are
 not considered part of the section titles.

 	Delete any section Entitled “Endorsements”. Such a section may not
 be included in the Modified Version.

 	Do not retitle any existing section to be Entitled “Endorsements” or
 to conflict in title with any Invariant Section.

 	Preserve any Warranty Disclaimers.

 If the Modified Version includes new front-matter sections or appendices that
 qualify as Secondary Sections and contain no material copied from the
 Document, you may at your option designate some or all of these sections as
 invariant. To do this, add their titles to the list of Invariant Sections in the
 Modified Version’s license notice. These titles must be distinct from any other
 section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing
 but endorsements of your Modified Version by various parties—for example,
 statements of peer review or that the text has been approved by an
 organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text,
 and a passage of up to 25 words as a Back-Cover Text, to the end of
 the list of Cover Texts in the Modified Version. Only one passage of
 Front-Cover Text and one of Back-Cover Text may be added by (or
 through arrangements made by) any one entity. If the Document already
 includes a cover text for the same cover, previously added by you or
 by arrangement made by the same entity you are acting on behalf
 of, you may not add another; but you may replace the old one, on
 explicit permission from the previous publisher that added the old
 one.

The author(s) and publisher(s) of the Document do not by this License give
 permission to use their names for publicity for or to assert or imply
 endorsement of any Modified Version.

 	COMBINING DOCUMENTS
 You may combine the Document with other documents released under this
 License, under the terms defined in section 4 above for modified versions,
 provided that you include in the combination all of the Invariant Sections of
 all of the original documents, unmodified, and list them all as Invariant
 Sections of your combined work in its license notice, and that you preserve all
 their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
 identical Invariant Sections may be replaced with a single copy. If there are
 multiple Invariant Sections with the same name but different contents, make
 the title of each such section unique by adding at the end of it, in parentheses,
 the name of the original author or publisher of that section if known, or else a
 unique number. Make the same adjustment to the section titles in
 the list of Invariant Sections in the license notice of the combined
 work.

In the combination, you must combine any sections Entitled “History” in the
 various original documents, forming one section Entitled “History”;
 likewise combine any sections Entitled “Acknowledgements”, and any
 sections Entitled “Dedications”. You must delete all sections Entitled
 “Endorsements.”

 	COLLECTIONS OF DOCUMENTS
 You may make a collection consisting of the Document and other
 documents released under this License, and replace the individual copies
 of this License in the various documents with a single copy that is
 included in the collection, provided that you follow the rules of this
 License for verbatim copying of each of the documents in all other
 respects.

You may extract a single document from such a collection, and distribute it
 individually under this License, provided you insert a copy of this License into
 the extracted document, and follow this License in all other respects regarding
 verbatim copying of that document.

 	AGGREGATION WITH INDEPENDENT WORKS
 A compilation of the Document or its derivatives with other separate and
 independent documents or works, in or on a volume of a storage or
 distribution medium, is called an “aggregate” if the copyright resulting from
 the compilation is not used to limit the legal rights of the compilation’s users
 beyond what the individual works permit. When the Document is
 included in an aggregate, this License does not apply to the other works
 in the aggregate which are not themselves derivative works of the
 Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
 Document, then if the Document is less than one half of the entire aggregate,
 the Document’s Cover Texts may be placed on covers that bracket the
 Document within the aggregate, or the electronic equivalent of covers if the
 Document is in electronic form. Otherwise they must appear on printed covers
 that bracket the whole aggregate.

 	TRANSLATION
 Translation is considered a kind of modification, so you may distribute
 translations of the Document under the terms of section 4. Replacing
 Invariant Sections with translations requires special permission from
 their copyright holders, but you may include translations of some or
 all Invariant Sections in addition to the original versions of these
 Invariant Sections. You may include a translation of this License, and all
 the license notices in the Document, and any Warranty Disclaimers,
 provided that you also include the original English version of this

 License and the original versions of those notices and disclaimers.
 In case of a disagreement between the translation and the original
 version of this License or a notice or disclaimer, the original version will
 prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
 “History”, the requirement (section 4) to Preserve its Title (section 1) will
 typically require changing the actual title.

 	TERMINATION
 You may not copy, modify, sublicense, or distribute the Document except as
 expressly provided under this License. Any attempt otherwise to copy, modify,
 sublicense, or distribute it is void, and will automatically terminate your
 rights under this License.

However, if you cease all violation of this License, then your license from a
 particular copyright holder is reinstated (a) provisionally, unless and until
 the copyright holder explicitly and finally terminates your license,
 and (b) permanently, if the copyright holder fails to notify you of
 the violation by some reasonable means prior to 60 days after the
 cessation.

Moreover, your license from a particular copyright holder is reinstated
 permanently if the copyright holder notifies you of the violation by some
 reasonable means, this is the first time you have received notice of
 violation of this License (for any work) from that copyright holder,
 and you cure the violation prior to 30 days after your receipt of the
 notice.

Termination of your rights under this section does not terminate the licenses
 of parties who have received copies or rights from you under this License. If
 your rights have been terminated and not permanently reinstated, receipt of a
 copy of some or all of the same material does not give you any rights to use
 it.

 	FUTURE REVISIONS OF THIS LICENSE
 The Free Software Foundation may publish new, revised versions of the GNU
 Free Documentation License from time to time. Such new versions will be
 similar in spirit to the present version, but may differ in detail to address new
 problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
 Document specifies that a particular numbered version of this License “or any
 later version” applies to it, you have the option of following the terms and
 conditions either of that specified version or of any later version that has been
 published (not as a draft) by the Free Software Foundation. If the Document
 does not specify a version number of this License, you may choose any version
 ever published (not as a draft) by the Free Software Foundation. If the

 Document specifies that a proxy can decide which future versions of this
 License can be used, that proxy’s public statement of acceptance of a
 version permanently authorizes you to choose that version for the
 Document.

 	RELICENSING
 “Massive Multiauthor Collaboration Site” (or “MMC Site”) means
 any World Wide Web server that publishes copyrightable works and
 also provides prominent facilities for anybody to edit those works. A
 public wiki that anybody can edit is an example of such a server. A
 “Massive Multiauthor Collaboration” (or “MMC”) contained in the site
 means any set of copyrightable works thus published on the MMC
 site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
 license published by Creative Commons Corporation, a not-for-profit
 corporation with a principal place of business in San Francisco, California, as
 well as future copyleft versions of that license published by that same
 organization.

“Incorporate” means to publish or republish a Document, in whole or in part,
 as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if
 all works that were first published under this License somewhere other than
 this MMC, and subsequently incorporated in whole or in part into the MMC,
 (1) had no cover texts or invariant sections, and (2) were thus incorporated
 prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
 under CC-BY-SA on the same site at any time before August 1, 2009,
 provided the MMC is eligible for relicensing.

 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

 Copyright (C) year your name. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled “GNU Free Documentation
License”.

 If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with…Texts.” line with this:

 with the Invariant Sections being list their titles, with the Front-Cover
Texts being list, and with the Back-Cover Texts being list.

 If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

 If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

 Endnotes

 [1] See “Why Copyleft?” ([link]).

 [2] For more on this, see “The X Window System Trap” ([link]).

 Chapter 36
On Selling Exceptions to the GNU GPL

Copyright © 2009, 2010 Richard Stallman
 This version of this essay is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 The practice of selling license exceptions became a hot topic when I co-signed
 Knowledge Ecology International’s letter warning that Oracle’s purchase of
 MySQL (plus the rest of Sun) might not be good for MySQL.

 As the following article explains, my feelings about selling license
 exceptions are mixed. Clearly it is possible to develop powerful and complex
 software packages under the GNU GPL without selling exceptions, and we do
 this. MySQL can be developed this way too. However, selling exceptions has
 been used by MySQL developers. Who should decide whether to continue this?
 I don’t think it is wise to give major decisions about a free software project to
 a large proprietary competitor, which might naturally prefer that the project
 develop less rather than more.

 One thing that makes no sense at all is the idea of changing the license
 of MySQL to something noncopyleft. That would eliminate the possibility of
 selling exceptions, but allow all sorts of proprietary modified versions. Wherever
 MySQL should go, it isn’t there.

When I co-signed the letter objecting to Oracle’s planned purchase of MySQL [1] (along
with the rest of Sun), some free software supporters were surprised that I approved
of the practice of selling license exceptions which the MySQL developers have used.
They expected me to condemn the practice outright. This article explains what I
think of the practice, and why.

 Selling exceptions means that the copyright holder of the code releases it to the
public under a free software license, then lets customers pay for permission to use
the same code under different terms, for instance allowing its inclusion in
proprietary applications.

 We must distinguish the practice of selling exceptions from something crucially
different: purely proprietary extensions or versions of a free program. These two
activities, even if practiced simultaneously by one company, are different issues. In
selling exceptions, the same code that the exception applies to is available to
the general public as free software. An extension or a modified version
that is only available under a proprietary license is proprietary software,
pure and simple, and no better than any other proprietary software. This
article is concerned with cases that involve strictly and only the sale of
exceptions.

 I’ve considered selling exceptions acceptable since the 1990s, and on occasion
I’ve suggested it to companies. Sometimes this approach has made it possible for
important programs to become free software.

 The KDE desktop was developed in the 90s based on the Qt library. Qt

was proprietary software, and TrollTech charged for permission to embed
it in proprietary applications. TrollTech allowed gratis use of Qt in free
applications, but this did not make it free/libre software. Completely free
operating systems therefore could not include Qt, so they could not use KDE
either.

 In 1998, the management of TrollTech recognized that they could make Qt free
software and continue charging for permission to embed it in proprietary software. I
do not recall whether the suggestion came from me, but I certainly was happy to see
the change, which made it possible to use Qt and thus KDE in the free software
world.

 Initially, they used their own license, the Q Public License (QPL)—quite
restrictive as free software licenses go, and incompatible with the GNU GPL. Later
they switched to the GNU GPL; I think I had explained to them that it would work
for the purpose.

 Selling exceptions depends fundamentally on using a copyleft license, such as
the GNU GPL, for the free software release. A copyleft license permits
embedding in a larger program only if the whole combined program is released
under that license; this is how it ensures extended versions will also be
free. Thus, users that want to make the combined program proprietary
need special permission. Only the copyright holder can grant that, and
selling exceptions is one style of doing so. Someone else, who received the
code under the GNU GPL or another copyleft license, cannot grant an
exception.

 When I first heard of the practice of selling exceptions, I asked myself whether
the practice is ethical. If someone buys an exception to embed a program in a larger
proprietary program, he’s doing something wrong (namely, making proprietary
software). Does it follow that the developer that sold the exception is doing
something wrong too?

 If that implication is valid, it would also apply to releasing the same program
under a noncopyleft free software license, such as the X11 license. That also permits
such embedding. So either we have to conclude that it’s wrong to release anything
under the X11 license—a conclusion I find unacceptably extreme—or reject this
implication. Using a noncopyleft license is weak, and usually an inferior choice, but
it’s not wrong.

 In other words, selling exceptions permits limited embedding of the code in
proprietary software, but the X11 license goes even further, permitting unlimited
use of the code (and modified versions of it) in proprietary software. If this
doesn’t make the X11 license unacceptable, it doesn’t make selling exceptions
unacceptable.

 There are three reasons why the FSF doesn’t practice selling exceptions. One is
that it doesn’t lead to the FSF’s goal: assuring freedom for each user of our
software. That’s what we wrote the GNU GPL for, and the way to achieve this most
thoroughly is to release under GPL version 3-or-later and not allow embedding in
proprietary software. Selling exceptions wouldn’t achieve this, just as release under
the X11 license wouldn’t. So normally we don’t do either of those things. We release
under the GPL only.

 Another reason we release only under the GPL is so as not to permit proprietary
extensions that would present practical advantages over our free programs. Users for
whom freedom is not a value might choose those nonfree versions rather than the
free programs they are based on—and lose their freedom. We don’t want to
encourage that.

 But there are occasional cases where, for specific reasons of strategy, we decide
that using a more permissive license on a certain program is better for the cause of
freedom. In those cases, we release the program to everyone under that permissive
license.

 This is because of another ethical principle that the FSF follows: to treat all
users the same. An idealistic campaign for freedom should not discriminate, so the
FSF is committed to giving the same license to all users. The FSF never sells
exceptions; whatever license or licenses we release a program under, that is available
to everyone.

 But we need not insist that companies follow that principle. I consider selling
exceptions an acceptable thing for a company to do, and I will suggest it where
appropriate as a way to get programs freed.

 Endnotes

 [1] James Love and Malini Aisola (Knowledge
Ecology International), Richard Stallman (FSF), Jim Killock (Open Rights Group), letter
to Neelie Kroes (Commissioner for Competition, European Commission), 19 October 2009,
http://keionline.org/sites/default/files/ec_letter_mysql_oct19.pdf.

 Part VI
Part VI: Traps and Challenges

 37 Can You Trust Your Computer?

 38 The JavaScript Trap

 39 Releasing Free Software If You Work at a University

 40 Nonfree DRM’d Games on GNU/Linux: Good or Bad?

 41 The Danger of E-Books

 42 E-books Must Increase Our Freedom, Not Decrease It

 43 Who Does That Server Really Serve?

 Chapter 37
Can You Trust Your Computer?

 Copyright © 2002, 2007, 2014, 2015 Richard Stallman
 This essay was first published on http://gnu.org, in 2002. This version is part of Free Software,
Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Who
should your computer take its orders from? Most people think their computers
should obey them, not obey someone else. With a plan they call “trusted
computing,” large media corporations (including the movie companies and record
companies), together with computer companies such as Microsoft and Intel, are
planning to make your computer obey them instead of you. (Microsoft’s version of
this scheme is called Palladium.) Proprietary programs have included malicious
features before, but this plan would make it universal.

 Proprietary software means, fundamentally, that you don’t control what it does;
you can’t study the source code, or change it. It’s not surprising that clever
businessmen find ways to use their control to put you at a disadvantage. Microsoft
has done this several times: one version of Windows was designed to report to
Microsoft all the software on your hard disk; a recent “security” upgrade in
Windows Media Player required users to agree to new restrictions. But
Microsoft is not alone: the KaZaa music-sharing software is designed so
that KaZaa’s business partner can rent out the use of your computer to its
clients. These malicious features are often secret, but even once you know
about them it is hard to remove them, since you don’t have the source
code.

 In the past, these were isolated incidents. “Trusted computing” would make the
practice pervasive. “Treacherous computing” is a more appropriate name, because
the plan is designed to make sure your computer will systematically disobey you. In
fact, it is designed to stop your computer from functioning as a general-purpose
computer. Every operation may require explicit permission.

 The technical idea underlying treacherous computing is that the computer
includes a digital encryption and signature device, and the keys are kept secret

from you. Proprietary programs will use this device to control which other
programs you can run, which documents or data you can access, and what
programs you can pass them to. These programs will continually download new
authorization rules through the internet, and impose those rules automatically
on your work. If you don’t allow your computer to obtain the new rules
periodically from the internet, some capabilities will automatically cease to
function.

 Of course, Hollywood and the record companies plan to use treacherous
computing for Digital Restrictions Management (DRM), so that downloaded videos
and music can be played only on one specified computer. Sharing will be entirely
impossible, at least using the authorized files that you would get from those
companies. You, the public, ought to have both the freedom and the ability to share
these things. (I expect that someone will find a way to produce unencrypted
versions, and to upload and share them, so DRM will not entirely succeed, but that
is no excuse for the system.)

 Making sharing impossible is bad enough, but it gets worse. There are plans to
use the same facility for email and documents—resulting in email that disappears in
two weeks, or documents that can only be read on the computers in one
company.

 Imagine if you get an email from your boss telling you to do something that you
think is risky; a month later, when it backfires, you can’t use the email to show that
the decision was not yours. “Getting it in writing” doesn’t protect you when the
order is written in disappearing ink.

 Imagine if you get an email from your boss stating a policy that is illegal or
morally outrageous, such as to shred your company’s audit documents, or to allow
a dangerous threat to your country to move forward unchecked. Today
you can send this to a reporter and expose the activity. With treacherous
computing, the reporter won’t be able to read the document; her computer
will refuse to obey her. Treacherous computing becomes a paradise for
corruption.

 Word processors such as Microsoft Word could use treacherous computing when
they save your documents, to make sure no competing word processors can read
them. Today we must figure out the secrets of Word format by laborious
experiments in order to make free word processors read Word documents. If Word
encrypts documents using treacherous computing when saving them, the free
software community won’t have a chance of developing software to read them—and
if we could, such programs might even be forbidden by the Digital Millennium
Copyright Act.

 Programs that use treacherous computing will continually download new
authorization rules through the internet, and impose those rules automatically on
your work. If Microsoft, or the US government, does not like what you
said in a document you wrote, they could post new instructions telling all
computers to refuse to let anyone read that document. Each computer
would obey when it downloads the new instructions. Your writing would be
subject to 1984-style retroactive erasure. You might be unable to read it
yourself.

 You might think you can find out what nasty things a treacherous-computing
application does, study how painful they are, and decide whether to accept them.
Even if you can find this out, it would be foolish to accept the deal, but you can’t
even expect the deal to stand still. Once you come to depend on using
the program, you are hooked and they know it; then they can change the
deal. Some applications will automatically download upgrades that will do
something different—and they won’t give you a choice about whether to
upgrade.

 Today you can avoid being restricted by proprietary software by not using it. If
you run GNU/Linux or another free operating system, and if you avoid
installing proprietary applications on it, then you are in charge of what your
computer does. If a free program has a malicious feature, other developers in
the community will take it out, and you can use the corrected version.
You can also run free application programs and tools on nonfree operating
systems; this falls short of fully giving you freedom, but many users do
it.

 Treacherous computing puts the existence of free operating systems and free
applications at risk, because you may not be able to run them at all. Some versions
of treacherous computing would require the operating system to be specifically
authorized by a particular company. Free operating systems could not be installed.
Some versions of treacherous computing would require every program to be
specifically authorized by the operating system developer. You could not run free
applications on such a system. If you did figure out how, and told someone, that
could be a crime.

 There are proposals already for US laws that would require all computers to
support treacherous computing, and to prohibit connecting old computers to the
internet. The CBDTPA (we call it the Consume But Don’t Try Programming Act)
is one of them. But even if they don’t legally force you to switch to treacherous
computing, the pressure to accept it may be enormous. Today people often
use Word format for communication, although this causes several sorts of
problems. [1] If only a treacherous-computing machine can read the latest Word
documents, many people will switch to it, if they view the situation only
in terms of individual action (take it or leave it). To oppose treacherous
computing, [2] we must join together and confront the situation as a collective
choice.

 To block treacherous computing will require large numbers of citizens to
organize. We need your help! Please support DefectiveByDesign.org, the FSF’s
campaign against Digital Restrictions Management.

 Postscripts

 	The computer security field uses the term “trusted computing” in a

 different way—beware of confusion between the two meanings.

 	The GNU Project distributes the GNU Privacy Guard, a program that
 implements public-key encryption and digital signatures, which you can
 use to send secure and private email. It is useful to explore how GPG
 differs from treacherous computing, and see what makes one helpful and
 the other so dangerous.
 When someone uses GPG to send you an encrypted document, and
 you use GPG to decode it, the result is an unencrypted document that
 you can read, forward, copy, and even reencrypt to send it securely to
 someone else. A treacherous-computing application would let you read
 the words on the screen, but would not let you produce an unencrypted
 document that you could use in other ways. GPG, a free software package,
 makes security features available to the users; they use it. Treacherous
 computing is designed to impose restrictions on the users; it uses them.

 	The supporters of treacherous computing focus their discourse on its
 beneficial uses. What they say is often correct, just not important.
 Like most hardware, treacherous-computing hardware can be used for
 purposes which are not harmful. But these features can be implemented
 in other ways, without treacherous-computing hardware. The principal
 difference that treacherous computing makes for users is the nasty
 consequence: rigging your computer to work against you.

What they say is true, and what I say is true. Put them together and
 what do you get? Treacherous computing is a plan to take away our
 freedom, while offering minor benefits to distract us from what we would
 lose.

 	Microsoft presents Palladium as a security measure, and claims that
 it will protect against viruses, but this claim is evidently false. A
 presentation by Microsoft Research in October 2002 stated that one of
 the specifications of Palladium is that existing operating systems and
 applications will continue to run; therefore, viruses will continue to be
 able to do all the things that they can do today.
 When Microsoft employees speak of “security” in connection with
 Palladium, they do not mean what we normally mean by that word:
 protecting your machine from things you do not want. They mean
 protecting your copies of data on your machine from access by you
 in ways others do not want. A slide in the presentation listed several
 types of secrets Palladium could be used to keep, including “third party
 secrets” and “user secrets”—but it put “user secrets” in quotation marks,
 recognizing that this is somewhat of an absurdity in the context of
 Palladium.

The presentation made frequent use of other terms that we frequently
 associate with the context of security, such as “attack,” “malicious code,”
 “spoofing,” as well as “trusted.” None of them means what it normally
 means. “Attack” doesn’t mean someone trying to hurt you, it means you
 trying to copy music. “Malicious code” means code installed by you to do
 what someone else doesn’t want your machine to do. “Spoofing” doesn’t
 mean someone’s fooling you, it means your fooling Palladium. And so
 on.

 	A previous statement by the Palladium developers stated the basic
 premise that whoever developed or collected information should have
 total control of how you use it. This would represent a revolutionary
 overturn of past ideas of ethics and of the legal system, and create an
 unprecedented system of control. The specific problems of these systems
 are no accident; they result from the basic goal. It is the goal we must
 reject.

 	As of 2015, treacherous computing has been implemented for PCs in the
 form of the “Trusted Platform Module”; however, for practical reasons,
 the TPM has proved a total failure for the goal of providing a platform
 for remote attestation to verify Digital Restrictions Management. Thus,
 companies implement DRM using other methods. At present, “Trusted
 Platform Modules” are not being used for DRM at all, and there are
 reasons to think that it will not be feasible to use them for DRM.
 Ironically, this means that the only current uses of the “Trusted Platform
 Modules” are the innocent secondary uses—for instance, to verify that
 no one has surreptitiously changed the system in a computer.
 Therefore, we conclude that the “Trusted Platform Modules” available
 for PCs are not dangerous, and there is no reason not to include one in
 a computer or support it in system software.

This does not mean that everything is rosy. Other hardware systems for
 blocking the owner of a computer from changing the software in it are
 in use in some ARM PCs as well as processors in portable phones, cars,
 TVs and other devices, and these are fully as bad as we expected.

This also does not mean that remote attestation is harmless. If ever
 a device succeeds in implementing that, it will be a grave threat to
 users’ freedom. The current “Trusted Platform Module” is harmless only
 because it failed in the attempt to make remote attestation feasible. We
 must not presume that all future attempts will fail too.

 Endnotes

 [1] See my article “We Can Put an End to Word Attachments,” at
http://gnu.org/philosophy/no-word-attachments.html, for a description of the problems
Word documents cause and a number of suggestions on how to tackle them.

 [2] For further information, see the “‘Trusted Computing’ Frequently Asked Questions,” at
http://www.cl.cam.ac.uk/users/rja14/tcpa-faq.html.

 Chapter 38
The JavaScript Trap

Copyright © 2009–2013 Richard Stallman
 This essay was first published on http://gnu.org, in 2009. This version is part of Free Software,
Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 You may be running nonfree programs on your computer every
 day without realizing it—through your web browser.

In the free software community, the idea that nonfree programs mistreat their users is
familiar. Some of us refuse entirely to install proprietary software, and many others
consider nonfreedom a strike against the program. Many users are aware that this
issue applies to the plug-ins that browsers offer to install, since they can be free or
nonfree.

 But browsers run other nonfree programs which they don’t ask you about or
even tell you about—programs that web pages contain or link to. These
programs are most often written in JavaScript, though other languages are also
used.

 JavaScript (officially called ECMAScript, but few use that name) was once used
for minor frills in web pages, such as cute but inessential navigation and display
features. It was acceptable to consider these as mere extensions of HTML
markup, rather than as true software; they did not constitute a significant
issue.

 Many sites still use JavaScript that way, but some use it for major programs
that do large jobs. For instance, Google Docs downloads into your machine a
JavaScript program which measures half a megabyte, in a compacted form
that we could call Obfuscript because it has no comments and hardly any
whitespace, and the method names are one letter long. The source code of a
program is the preferred form for modifying it; the compacted code is not
source code, and the real source code of this program is not available to the
user.

 Browsers don’t normally tell you when they load JavaScript programs. Most
browsers have a way to turn off JavaScript entirely, but none of them can check for
JavaScript programs that are nontrivial and nonfree. Even if you’re aware
of this issue, it would take you considerable trouble to identify and then
block those programs. However, even in the free software community most
users are not aware of this issue; the browsers’ silence tends to conceal
it.

 It is possible to release a JavaScript program as free software, by distributing the
source code under a free software license. But even if the program’s source is
available, there is no easy way to run your modified version instead of the original.

Current free browsers do not offer a facility to run your own modified version
instead of the one delivered in the page. The effect is comparable to tivoization,
although not quite so hard to overcome.

 JavaScript is not the only language web sites use for programs sent to the user.
Flash supports programming through an extended variant of JavaScript. We will
need to study the issue of Flash to make suitable recommendations. Silverlight
seems likely to create a problem similar to Flash, except worse, since Microsoft uses
it as a platform for nonfree codecs. A free replacement for Silverlight does not do
the job for the free world unless it normally comes with free replacement
codecs.

 Java applets also run in the browser, and raise similar issues. In general, any sort
of applet system poses this sort of problem. Having a free execution environment for
an applet only brings us far enough to encounter the problem.

 A strong movement has developed that calls for web sites to communicate only
through formats and protocols that are free (some say “open”); that is to say, whose
documentation is published and which anyone is free to implement. With the
presence of programs in web pages, that criterion is necessary, but not
sufficient. JavaScript itself, as a format, is free, and use of JavaScript in a
web site is not necessarily bad. However, as we’ve seen above, it also isn’t
necessarily OK. When the site transmits a program to the user, it is not
enough for the program to be written in a documented and unencumbered
language; that program must be free, too. “Only free programs transmitted to
the user” must become part of the criterion for proper behavior by web
sites.

 Silently loading and running nonfree programs is one among several issues raised
by “web applications.” The term “web application” was designed to disregard the
fundamental distinction between software delivered to users and software running
on the server. It can refer to a specialized client program running in a browser; it
can refer to specialized server software; it can refer to a specialized client program
that works hand in hand with specialized server software. The client and server
sides raise different ethical issues, even if they are so closely integrated that
they arguably form parts of a single program. This article addresses only
the issue of the client-side software. We are addressing the server issue
separately.

 In practical terms, how can we deal with the problem of nonfree JavaScript
programs in web sites? The first step is to avoid running it.

 What do we mean by “nontrivial”? It is a matter of degree, so this is a matter of
designing a simple criterion that gives good results, rather than finding the one
correct answer.

 Our tentative policy is to consider a JavaScript program nontrivial if:

 	it makes an AJAX request or is loaded along with scripts that make an
 AJAX request,

 	it loads external scripts dynamically or is loaded along with scripts that

 do,

 	it defines functions or methods and either loads an external script (from
 html) or is loaded as one,

 	it uses dynamic JavaScript constructs that are difficult to analyze without
 interpreting the program, or is loaded along with scripts that use such
 constructs. These constructs are:

Thank you to Matt Lee and John Resig for their help in defining our proposed criterion,
and to David Parunakian for helping to make me aware of the problem.

 	using the eval function,

 	calling methods with the square bracket notation,

 	using any other construct than a string literal with certain methods
 (Obj.write, Obj.createElement,…).

 How do we tell whether the JavaScript code is free? At the end of this article we
propose a convention by which a nontrivial JavaScript program in a web page can
state the URL where its source code is located, and can state its license too, using
stylized comments.

 Finally, we need to change free browsers to detect and block nontrivial nonfree
JavaScript in web pages. The program LibreJS detects nonfree, nontrivial
JavaScript in pages you visit, and blocks it. [1] LibreJS is an add-on for IceCat and
IceWeasel (and Firefox).

 Browser users also need a convenient facility to specify JavaScript code to use
instead of the JavaScript in a certain page. (The specified code might be
total replacement, or a modified version of the free JavaScript program in
that page.) Greasemonkey comes close to being able to do this, but not
quite, since it doesn’t guarantee to modify the JavaScript code in a page
before that program starts to execute. Using a local proxy works, but is too
inconvenient now to be a real solution. We need to construct a solution that
is reliable and convenient, as well as sites for sharing changes. The GNU
Project would like to recommend sites which are dedicated to free changes
only.

 These features will make it possible for a JavaScript program included in a web
page to be free in a real and practical sense. JavaScript will no longer be a
particular obstacle to our freedom—no more than C and Java are now. We will be
able to reject and even replace the nonfree nontrivial JavaScript programs, just as
we reject and replace nonfree packages that are offered for installation in the
usual way. Our campaign for web sites to free their JavaScript can then

begin.

 In the mean time, there’s one case where it is acceptable to run a nonfree
JavaScript program: to send a complaint to the web site operators saying they
should free or remove the JavaScript code in the site. Please don’t hesitate to
enable JavaScript temporarily to do that—but remember to disable it again
afterwards.

 Appendix A: A Convention for Releasing Free JavaScript Programs

For references to corresponding source code, we recommend

 // @source:

followed by the URL. This satisfies the GNU GPL’s requirement to distribute
source code. If the source is on a different site, you must take care to handle that
properly. Source code is necessary for the program to be free.

 To indicate the license of the JavaScript code embedded in a page, we
recommend putting the license notice between two notes of this form:

 @licstart The following is the entire license notice for the JavaScript code
in this page.

...

@licend The above is the entire license notice for the JavaScript code in this
page.

Of course, all of this should be contained in a multiline comment.

 The GNU GPL, like many other free software licenses, requires distribution of a
copy of the license with both source and binary forms of the program. However, the
GNU GPL is long enough that including it in a page with a JavaScript program can
be inconvenient. You can remove that requirement, for code that you have the
copyright on, with a license notice like this:

 Copyright (C) YYYY Developer

The JavaScript code in this page is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License (GNU GPL) as
published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version. The code is distributed WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU GPL for more details.

As additional permission under GNU GPL version 3 section 7, you may distribute
non-source (e.g., minimized or compacted) forms of that code without the copy
of the GNU GPL normally required by section 4, provided you include this
license notice and a URL through which recipients can access the Corresponding
Source.

 I thank Jaffar Rumith for bringing this issue to my attention.

 Appendix B: Publishing Free JavaScript Programs As a Webmaster

If you’re a webmaster deploying free JavaScript software on your site, clearly and
consistently publishing information about those files’ licenses and source code helps
your visitors make sure that they’re running free software, and help you comply
with license conditions.

 One method of stating the licenses is the one described above in Appendix A.
A second method, JavaScript license web labels, can be more convenient
for libraries of minified JavaScript code, especially when you didn’t write
them.

 Endnotes

 [1]

 The LibreJS project (http://gnu.org/software/librejs/) is in need of JavaScript
programmers. If you have the necessary skills, please help us maintain this valuable browser
extension.

 Chapter 39
Releasing Free Software If You Work at a University

 Copyright © 2002, 2014 Richard Stallman
 This essay was originally published on http://gnu.org, in 2002. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

In
the free software movement, we believe computer users should have the
freedom to change and redistribute the software that they use. The “free”
in “free software” refers to freedom: it means users have the freedom to
run, modify and redistribute the software. Free software contributes to
human knowledge, while nonfree software does not. Universities should
therefore encourage free software for the sake of advancing human knowledge,
just as they should encourage scientists and other scholars to publish their
work.

 Alas, many university administrators have a grasping attitude towards software
(and towards science); they see programs as opportunities for income, not as
opportunities to contribute to human knowledge. Free software developers have
been coping with this tendency for almost 20 years.

 When I started developing the GNU operating system, in 1984, my
first step was to quit my job at MIT. I did this specifically so that the
MIT licensing office would be unable to interfere with releasing GNU as
free software. I had planned an approach for licensing the programs in
GNU that would ensure that all modified versions must be free software as
well—an approach that developed into the GNU General Public License (GNU
GPL)—and I did not want to have to beg the MIT administration to let me use
it.

 Over the years, university affiliates have often come to the Free Software
Foundation for advice on how to cope with administrators who see software only as
something to sell. One good method, applicable even for specifically funded
projects, is to base your work on an existing program that was released under the
GNU GPL. Then you can tell the administrators, “We’re not allowed to release the
modified version except under the GNU GPL—any other way would be copyright
infringement.” After the dollar signs fade from their eyes, they will usually consent
to releasing it as free software.

 You can also ask your funding sponsor for help. When a group at NYU
developed the GNU Ada Compiler, with funding from the US Air Force, the
contract explicitly called for donating the resulting code to the Free Software
Foundation. Work out the arrangement with the sponsor first, then politely show
the university administration that it is not open to renegotiation. They would
rather have a contract to develop free software than no contract at all, so they will
most likely go along.

 Whatever you do, raise the issue early—well before the program is half
finished. At this point, the university still needs you, so you can play hardball:
tell the administration you will finish the program, make it usable, if they
agree in writing to make it free software (and agree to your choice of free
software license). Otherwise you will work on it only enough to write a
paper about it, and never make a version good enough to release. When the
administrators know their choice is to have a free software package that
brings credit to the university or nothing at all, they will usually choose the
former.

 The FSF may be able to persuade your university to accept the GNU General
Public License, or to accept GPL version 3. If you can’t do it alone, please give us
the chance to help. Send mail to licensing@fsf.org, and put “urgent” in the
Subject field.

 Not all universities have grasping policies. The University of Texas has a policy
that makes it easy to release software developed there as free software under the
GNU General Public License. Univates in Brazil, and the International Institute of
Information Technology in Hyderabad, India, both have policies in favor of releasing
software under the GPL. By developing faculty support first, you may be able to
institute such a policy at your university. Present the issue as one of principle: does
the university have a mission to advance human knowledge, or is its sole purpose to
perpetuate itself?

 In persuading the university, it helps to approach the issue with determination
and based on an ethical perspective, as we do in the free software movement. To
treat the public ethically, the software should be free—as in freedom—for the whole
public.

 Many developers of free software profess narrowly practical reasons for
doing so: they advocate allowing others to share and change software as
an expedient for making software powerful and reliable. If those values
motivate you to develop free software, well and good, and thank you for your
contribution. But those values do not give you a good footing to stand firm
when university administrators pressure or tempt you to make the program
nonfree.

 For instance, they may argue that “We could make it even more powerful
and reliable with all the money we can get.” This claim may or may not
come true in the end, but it is hard to disprove in advance. They may
suggest a license to offer copies “free of charge, for academic use only,” which
would tell the general public they don’t deserve freedom, and argue that
this will obtain the cooperation of academia, which is all (they say) you
need.

 If you start from values of convenience alone, it is hard to make a good case for
rejecting these dead-end proposals, but you can do it easily if you base your stand
on ethical and political values. What good is it to make a program powerful and
reliable at the expense of users’ freedom? Shouldn’t freedom apply outside academia
as well as within it? The answers are obvious if freedom and community are among
your goals. Free software respects the users’ freedom, while nonfree software negates
it.

 Nothing strengthens your resolve like knowing that the community’s freedom
depends, in one instance, on you.

 Endnotes

 [1]

 The LibreJS project (http://gnu.org/software/librejs/) is in need of JavaScript
programmers. If you have the necessary skills, please help us maintain this valuable browser
extension.

 Chapter 40
Nonfree DRM’d Games on GNU/Linux: Good or Bad?

 Copyright © 2013 Free Software Foundation, Inc.
 This version of this essay is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

A well
known company, Valve, that distributes nonfree computer games with Digital
Restrictions Management, recently announced it would distribute these games for
GNU/Linux. What good and bad effects can this have?

 I suppose that availability of popular nonfree programs on GNU/Linux can
boost adoption of the system. However, the aim of GNU goes beyond “success”; its
purpose is to bring freedom to the users. [1] Thus, the larger question is how this
development affects users’ freedom.

 The problem with these games is not that they are commercial. [2] (We see
nothing wrong with that.) It is not that the developers sell copies; [3] that’s not wrong
either. The problem is that the games contain software that is not free (free in the
sense of freedom, of course). [4]

 Nonfree game programs (like other nonfree programs) are unethical because they
deny freedom to their users. (Game art is a different issue, because it isn’t software.)
If you want freedom, one requisite for it is not having or running nonfree programs
on your computer. That much is clear.

 However, if you’re going to use these games, you’re better off using them on
GNU/Linux rather than on Microsoft Windows. At least you avoid the harm to
your freedom that Windows would do. [5]

 Thus, in direct practical terms, this development can do both harm and good. It
might encourage GNU/Linux users to install these games, and it might encourage
users of the games to replace Windows with GNU/Linux. My guess is that the
direct good effect will be bigger than the direct harm. But there is also
an indirect effect: what does the use of these games teach people in our
community?

 Any GNU/Linux distro that comes with software to offer these games will teach
users that the point is not freedom. Nonfree software in GNU/Linux distros [6]
already works against the goal of freedom. Adding these games to a distro would
augment that effect.

 Free software is a matter of freedom, not price. A free game need not be gratis.
It is feasible to develop free games commercially, while respecting your freedom to
change the software you use. Since the art in the game is not software, it does not
need to be free. There is in fact free game software developed by companies, as well
as free games developed noncommercially by volunteers. Crowdfunding development
will only get easier.

 But if we suppose that it is not feasible in the current situation to develop a
certain kind of free game—what would follow then? There’s no good in

writing it as a nonfree game. To have freedom in your computing, requires
rejecting nonfree software, pure and simple. You as a freedom-lover won’t
use the nonfree game if it exists, so you won’t lose anything if it does not
exist.

 If you want to promote the cause of freedom in computing, please take care not
to talk about the availability of these games on GNU/Linux as support for our
cause. Instead you could tell people about the LibreGameWiki [7] that attempts to
catalog free games, the FreeGameDev Forums, [8] and the LibrePlanet Gaming
Collective’s free gaming night. [9]

 Endnotes

 [1] See “Free Software Is Even More Important Now” ([link]) for more on this.

 [2] See [link] for an explanation of the confusion the term “commercial” can create.

 [3] See “Selling Free Software” ([link]) for more on this issue.

 [4] See [link] for the full definition of free software.

 [5] See our campaign at http://upgradefromwindows8.org/ for more on this issue.

 [6] See http://gnu.org/distros/common-distros.html for an explanation of why we don’t
endorse certain (often popular) distributions.

 [7] See https://libregamewiki.org/Main_Page.

 [8] See http://forum.freegamedev.net/index.php.

 [9] See http://libreplanet.org/wiki/Group:LibrePlanet_Gaming_Collective.

 Chapter 41
The Danger of E-Books

 Copyright © 2011, 2014 Richard Stallman
 This version of this essay is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

In an
age where business dominates our governments and writes our laws, every
technological advance offers business an opportunity to impose new restrictions on
the public. Technologies that could have empowered us are used to chain us
instead.

 With printed books,

 	You can buy one with cash, anonymously.

 	Then you own it.

 	You are not required to sign a license that restricts your use of it.

 	The format is known, and no proprietary technology is needed to read
 the book.

 	You can give, lend or sell the book to another.

 	You can, physically, scan and copy the book, and it’s sometimes lawful
 under copyright.

 	Nobody has the power to destroy your book.

 Contrast that with Amazon e-books (fairly typical):

 	Amazon requires users to identify themselves to get an e-book.

 	In some countries, including the US, Amazon says the user cannot own
 the e-book.

 	Amazon requires the user to accept a restrictive license on use of the
 e-book.

 	The format is secret, and only proprietary user-restricting software can
 read it at all.

 	An ersatz “lending” is allowed for some books, for a limited time, but
 only by specifying by name another user of the same system. No giving
 or selling.

 	To copy the e-book is impossible due to Digital Restrictions
 Management [1] in the player and prohibited by the license, which is more
 restrictive than copyright law.

 	Amazon can remotely delete the e-book using a back door. It used this
 back door in 2009 to delete thousands of copies of George Orwell’s 1984.

 Even one of these infringements makes e-books a step backward from printed
books. We must reject e-books until they respect our freedom.

 The e-book companies say denying our traditional freedoms is necessary to
continue to pay authors. The current copyright system supports those companies
handsomely and most authors badly. We can support authors better in other ways
that don’t require curtailing our freedom, and even legalize sharing. Two methods
I’ve suggested are:

 	To distribute tax funds to authors based on the cube root of each author’s
 popularity. [2]

 	To design players so users can send authors anonymous voluntary
 payments.

 E-books need not attack our freedom (Project Gutenberg’s e-books don’t), but
they will if companies get to decide. It’s up to us to stop them.

 Join the fight: sign up at http://DefectiveByDesign.org/ebooks.html.

 Endnotes

 [1] See “The Right to Read” ([link]) for more on this.

 [2] See both “Copyright vs. Community in the Age of Computer Networks” ([link]) and
my 2012 open letter to the President of the Brazilian Senate, Senator José Sarney, at
https://stallman.org/articles/internet-sharing-license.en.html, for more on this.

 Chapter 42
E-books Must Increase Our Freedom, Not Decrease It

 Copyright © 2012 Richard Stallman
 This essay was originally published on http://guardian.co.uk, on 17 April 2012, as
“Technology Should Help Us Share, Not Constrain Us,” with some surprise editing. This version
incorporates parts of that editing while restoring parts of the original text and is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

I love
The Jehovah Contract, and I’d like everyone else to love it too. I have lent it out at
least six times over the years. Printed books let us do that.

 I couldn’t do that with most commercial e-books. It’s “not allowed.” And if I
tried to disobey, the software in e-readers has malicious features called Digital
Restrictions Management (DRM, for short) to restrict reading, so it simply won’t
work. The e-books are encrypted so that only proprietary software with malicious
functionality can display them.

 Many other habits that we readers are accustomed to are “not allowed”
for e-books. With the Amazon “Kindle” (for which “Swindle” [1] is a more
fitting name), to take one example, users can’t buy a book anonymously
with cash. “Kindle” books are typically available from Amazon only, and
Amazon makes users identify themselves. Thus, Amazon knows exactly which
books each user has read. In a country such as the UK, where you can be
prosecuted for possessing a forbidden book, [2] this is more than hypothetically
Orwellian.

 Furthermore, you can’t sell the e-book after you read it (if Amazon has its way,
the used book stores where I have passed many an afternoon will be history). You
can’t give it to a friend either, because according to Amazon you never really owned
it. Amazon requires users to sign an end-user license agreement (EULA) which says
so.

 You can’t even be sure it will still be in your machine tomorrow. People reading
1984 in the “Kindle” had an Orwellian experience: their e-books vanished right
before their eyes, as Amazon used a malicious software feature called a “back door”
to remotely delete them (virtual book-burning; is that what “Kindle” means?). But
don’t worry; Amazon promised never to do this again, except by order of the
state.

 With software, either the users control the program (making such software Libre
or Free [3]) or the program controls its users (non-Libre). Amazon’s e-book policies
imitate the distribution policies of non-Libre software, but that’s not the only
relationship between the two. The malicious software features described above [4] are
imposed on users via software that’s not Libre. If a Libre program had malicious
features like those, some users skilled at programming would remove them, then
provide the corrected version to all the other users. Users can’t change non-Libre
software, which makes it an ideal instrument for exercising power over the

public. [5]

 Any one of these encroachments on our freedom is reason aplenty to say no. If
these policies were limited to Amazon, we’d bypass them, but the other e-book
dealers’ policies are roughly similar.

 What worries me most is the prospect of losing the option of printed books. The
Guardian has announced “digital-only reads”: in other words, books available only
at the price of freedom. I will not read any book at that price. Five years from now,
will unauthorized copies be the only ethically acceptable copies for most
books?

 It doesn’t have to be that way. With anonymous payment on the internet,
paying for downloads of non-DRM non-EULA e-books would respect our
freedom. Physical stores could sell such e-books for cash, like digital music on
CDs—still available even though the music industry is aggressively pushing
DRM-restrictive services such as Spotify. Physical CD stores face the burden of an
expensive inventory, but physical e-book stores could write copies onto your
USB memory stick, the only inventory being memory sticks to sell if you
need.

 The reason publishers give for their restrictive e-books practices is to stop people
from sharing copies. They say this is for the sake of the authors; but even if it did
serve the authors’ interests (which for quite famous authors it may), it could not
justify DRM, EULAs or the Digital Economy Act which persecutes readers for
sharing. In practice, the copyright system does a bad job of supporting authors
aside from the most popular ones. Other authors’ principal interest is to be
better known, so sharing their work benefits them as well as readers. Why
not switch to a system that does the job better and is compatible with
sharing?

 A tax on memories and internet connectivity, along the general lines of what
most EU countries do, could do the job well if three points are got right. The money
should be collected by the state and distributed according to law, not given to a
private collecting society; it should be divided among all authors, and we mustn’t
let companies take any of it from them; and the distribution of money should be
based on a sliding scale, not in linear proportion to popularity. I suggest using
the cube root of each author’s popularity: if A is eight times as popular
as B, A gets twice B’s amount (not eight times B’s amount). This would
support many fairly popular writers adequately instead of making a few stars
richer.

 Another system is to give each e-reader a button to send some small sum
(perhaps 25 pence in the UK) to the author.

 Sharing is good, and with digital technology, sharing is easy. (I mean
non-commercial redistribution of exact copies.) So sharing ought to be legal, and
preventing sharing is no excuse to make e-books into handcuffs for readers. If
e-books mean that readers’ freedom must either increase or decrease, we must
demand the increase.

 Endnotes

 [1] See “Why Call It the Swindle?” ([link]) for more on this.

 [2] Ben Quinn, “Man in London Charged with Terrorism Offences over Al-Qaida Document,”
4 April 2012, http://www.theguardian.com/world/2012/apr/04/al-qaida-terrorism.

 [3] See “What Is Free Software?” ([link]) for the full definition of free software.

 [4] See http://gnu.org/proprietary/proprietary.html for an evolving list of these
threats.

 [5] See my articles “Free Software Is Even
More Important Now” ([link]) and “The Problem Is Software Controlled by Its Developer,” at
http://gnu.org/philosophy/the-root-of-this-problem.html, for more on this issue.

 Chapter 43
Who Does That Server Really Serve?

 Copyright © 2010, 2013, 2015 Richard Stallman
 This essay was originally published in the online edition of the Boston Review, on
8 March 2010, under the title “What Does That Server Really Serve?” This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

On
the internet, proprietary software isn’t the only way to lose your
freedom. Service as a Software Substitute, or SaaSS, is another way to
let someone else have power over your computing.

 SaaSS means using a service implemented by someone else as a substitute for
running your copy of a program. The term is ours; articles and ads won’t use
it, and they won’t tell you whether a service is SaaSS. Instead they will
probably use the vague and distracting term “cloud,” which lumps SaaSS
together with various other practices, some abusive and some OK. With the
explanation and examples in this page, you can tell whether a service is
SaaSS.

 Background: How Proprietary Software Takes away Your Freedom

 Digital technology can give you freedom; it can also take your freedom away.
The first threat to our control over our computing came from proprietary software:
software that the users cannot control because the owner (a company such as Apple
or Microsoft) controls it. The owner often takes advantage of this unjust power by
inserting malicious features such as spyware, back doors, and Digital Restrictions
Management (DRM) (referred to as “Digital Rights Management” in their
propaganda). [1]

 Our solution to this problem is developing free software and rejecting
proprietary software. Free software means that you, as a user, have four essential
freedoms: (0) to run the program as you wish, (1) to study and change the source
code so it does what you wish, (2) to redistribute exact copies, and (3) to
redistribute copies of your modified versions. (See the free software definition
([link]).)

 With free software, we, the users, take back control of our computing.
Proprietary software still exists, but we can exclude it from our lives and many of us
have done so. However, we now face a new threat to our control over our computing:
Service as a Software Substitute (SaaSS). For our freedom’s sake, we have to reject
that too.

 How Service as a Software Substitute Takes away Your Freedom

 Service as a Software Substitute (SaaSS) means using a service as a
substitute for running your copy of a program. Concretely, it means that
someone sets up a network server that does certain computing tasks—for
instance, modifying a photo, translating text into another language, etc. —then
invites users to do computing via that server. A user of the server would
send her data to the server, which does her own computing on the data
thus provided, then sends the results back to her or acts directly on her
behalf.

 The computing is her own because, by assumption, she could, in principle, have
done it by running a program on her own computer (whether or not that program
is available to her at present). When this assumption is not so, it isn’t
SaaSS.

 These servers wrest control from the users even more inexorably than
proprietary software. With proprietary software, users typically get an executable
file but not the source code. That makes it hard to study the code that is running,
so it’s hard to determine what the program really does, and hard to change
it.

 With SaaSS, the users do not have even the executable file that does their
computing: it is on someone else’s server, where the users can’t see or touch it. Thus
it is impossible for them to ascertain what it really does, and impossible to change
it.

 Furthermore, SaaSS automatically leads to consequences equivalent to the
malicious features of certain proprietary software.

 For instance, some proprietary programs are “spyware”: the program sends out
data about users’ computing activities. [2] Microsoft Windows sends information
about users’ activities to Microsoft. Windows Media Player reports what each user
watches or listens to. The Amazon Kindle reports which pages of which books
the user looks at, and when. Angry Birds reports the user’s geolocation
history.

 Unlike proprietary software, SaaSS does not require covert code to obtain the
user’s data. Instead, users must send their data to the server in order to
use it. This has the same effect as spyware: the server operator gets the
data—with no special effort, by the nature of SaaSS. Amy Webb, who
intended never to post any photos of her daughter, made the mistake of
using SaaSS (Instagram) to edit photos of her. Eventually they leaked from
there. [3]

 Some proprietary operating systems have a universal back door, permitting
someone to remotely install software changes. For instance, Windows has a universal
back door with which Microsoft can forcibly change any software on the machine.
Nearly all portable phones have them, too. Some proprietary applications also have
universal back doors; for instance, the Steam client for GNU/Linux allows the
developer to remotely install modified versions.

 With SaaSS, the server operator can change the software in use on the server.
He ought to be able to do this, since it’s his computer; but the result is the same as
using a proprietary application program with a universal back door: someone has
the power to silently impose changes in how the user’s computing gets
done.

 Thus, SaaSS is equivalent to running proprietary software with spyware and a
universal back door. It gives the server operator unjust power over the user, and
that power is something we must resist.

 SaaSS and SaaS

 Originally we referred to this problematical practice as “SaaS,” which stands for
“Software as a Service.” It’s a commonly used term for setting up software on a
server rather than offering copies of it to users, and we thought it described
precisely the cases where this problem occurs.

 Subsequently we became aware that the term SaaS is sometimes used for
communication services—activities for which this issue is not applicable. In
addition, the term “Software as a Service” doesn’t explain why the practice is bad.
So we coined the term “Service as a Software Substitute,” which defines the bad
practice more clearly and says what is bad about it.

 Untangling the SaaSS Issue from the Proprietary Software Issue

 SaaSS and proprietary software lead to similar harmful results, but the
mechanisms are different. With proprietary software, the mechanism is that
you have and use a copy which is difficult and/or illegal to change. With
SaaSS, the mechanism is that you don’t have the copy that’s doing your
computing.

 These two issues are often confused, and not only by accident. Web developers
use the vague term “web application” to lump the server software together with
programs run on your machine in your browser. Some web pages install nontrivial,
even large JavaScript programs into your browser without informing you. When
these JavaScript programs are nonfree, [4] they cause the same sort of injustice as any
other nonfree software. Here, however, we are concerned with the issue of using the
service itself.

 Many free software supporters assume that the problem of SaaSS will be solved
by developing free software for servers. For the server operator’s sake, the programs
on the server had better be free; if they are proprietary, their owners have power
over the server. That’s unfair to the server operator, and doesn’t help the users at

all. But if the programs on the server are free, that doesn’t protect the server’s
users from the effects of SaaSS. These programs liberate the server operator, but
not the server’s users.

 Releasing the server software source code does benefit the community: it enables
suitably skilled users to set up similar servers, perhaps changing the software. We
recommend using the GNU Affero GPL as the license for programs often used on
servers. [5]

 But none of these servers would give you control over computing you do on it,
unless it’s your server. It may be OK to trust your friend’s server for some jobs, just
as you might let your friend maintain the software on your own computer. Outside
of that, all these servers would be SaaSS for you. SaaSS always subjects you to the
power of the server operator, and the only remedy is, Don’t use SaaSS! Don’t
use someone else’s server to do your own computing on data provided by
you.

 This issue demonstrates the depth of the difference between “open” and “free.”
Source code that is open source is, nearly always, free. [6] However, the idea of an
“open software” service, [7] meaning one whose server software is open source and/or
free, fails to address the issue of SaaSS.

 Services are fundamentally different from programs, and the ethical
issues that services raise are fundamentally different from the issues that
programs raise. To avoid confusion, we avoid describing a service as “free” or
“proprietary.” [8]

 Distinguishing SaaSS from Other Network Services

 Which online services are SaaSS? The clearest example is a translation service,
which translates (say) English text into Spanish text. Translating a text for you is
computing that is purely yours. You could do it by running a program on your own
computer, if only you had the right program. (To be ethical, that program should
be free.) The translation service substitutes for that program, so it is Service as a
Software Substitute, or SaaSS. Since it denies you control over your computing, it
does you wrong.

 Another clear example is using a service such as Flickr or Instagram to modify a
photo. Modifying photos is an activity that people have done in their own
computers for decades; doing it in a server instead of your own computer is
SaaSS.

 Rejecting SaaSS does not mean refusing to use any network servers run by
anyone other than you. Most servers are not SaaSS because the jobs they do are not
the user’s own computing.

 The original idea of web servers wasn’t to do computing for you, it was to
publish information for you to access. Even today this is what most web sites do,
and it doesn’t pose the SaaSS problem, because accessing someone’s published

information isn’t doing your own computing. Neither is publishing your
own materials via a blog site or a microblogging service such as Twitter
or StatusNet. (These services may have other problems, of course.) The
same goes for other communication not meant to be private, such as chat
groups.

 In its essence, social networking is a form of communication and publication, not
SaaSS. However, a service whose main facility is social networking can have features
or extensions which are SaaSS.

 If a service is not SaaSS, that does not mean it is OK. There are other ethical
issues about services. For instance, Facebook distributes video in Flash, which
pressures users to run nonfree software; it requires running nonfree JavaScript code;
and it gives users a misleading impression of privacy while luring them into baring
their lives to Facebook. Those are important issues, different from the SaaSS
issue.

 Services such as search engines collect data from around the web and let you
examine it. Looking through their collection of data isn’t your own computing in
the usual sense—you didn’t provide that collection—so using such a service to
search the web is not SaaSS. However, using someone else’s server to implement a
search facility for your own site is SaaSS.

 Purchasing online is not SaaSS, because the computing isn’t your own; rather, it
is done jointly by and for you and the store. The real issue in online shopping is
whether you trust the other party with your money and other personal information
(starting with your name).

 Repository sites such as as Savannah and SourceForge are not inherently SaaSS,
because a repository’s job is publication of data supplied to it.

 Using a joint project’s servers isn’t SaaSS because the computing you do in this
way isn’t your own. For instance, if you edit pages on Wikipedia, you are not doing
your own computing; rather, you are collaborating in Wikipedia’s computing.
Wikipedia controls its own servers, but organizations as well as individuals
encounter the problem of SaaSS if they do their computing in someone else’s
server.

 Some sites offer multiple services, and if one is not SaaSS, another may be
SaaSS. For instance, the main service of Facebook is social networking, and that is
not SaaSS; however, it supports third-party applications, some of which are
SaaSS. Flickr’s main service is distributing photos, which is not SaaSS,
but it also has features for editing photos, which is SaaSS. Likewise, using
Instagram to post a photo is not SaaSS, but using it to transform the photo is
SaaSS.

 Google Docs shows how complex the evaluation of a single service can become.
It invites people to edit a document by running a large nonfree JavaScript
program, [9] clearly wrong. However, it offers an API for uploading and downloading
documents in standard formats. A free software editor can do so through this API.
This usage scenario is not SaaSS, because it uses Google Docs as a mere repository.
Showing all your data to a company is bad, but that is a matter of privacy, not
SaaSS; depending on a service for access to your data is bad, but that
is a matter of risk, not SaaSS. On the other hand, using the service for

converting document formats is SaaSS, because it’s something you could
have done by running a suitable program (free, one hopes) in your own
computer.

 Using Google Docs through a free editor is rare, of course. Most often, people
use it through the nonfree JavaScript program, which is bad like any nonfree
program. This scenario might involve SaaSS, too; that depends on what part of the
editing is done in the JavaScript program and what part in the server. We don’t
know, but since SaaSS and proprietary software do similar wrong to the user, it is
not crucial to know.

 Publishing via someone else’s repository does not raise privacy issues, but
publishing through Google Docs has a special problem: it is impossible even to view
the text of a Google Docs document in a browser without running the nonfree
JavaScript code. Thus, you should not use Google Docs to publish anything—but
the reason is not a matter of SaaSS.

 The IT industry discourages users from making these distinctions. That’s what
the buzzword “cloud computing” is for. This term is so nebulous that it could refer
to almost any use of the internet. It includes SaaSS as well as many other network
usage practices. In any given context, an author who writes “cloud” (if a
technical person) probably has a specific meaning in mind, but usually does
not explain that in other articles the term has other specific meanings.
The term leads people to generalize about practices they ought to consider
individually.

 If “cloud computing” has a meaning, it is not a way of doing computing,
but rather a way of thinking about computing: a devil-may-care approach
which says, “Don’t ask questions. Don’t worry about who controls your
computing or who holds your data. Don’t check for a hook hidden inside
our service before you swallow it. Trust companies without hesitation.” In
other words, “Be a sucker.” A cloud in the mind is an obstacle to clear
thinking. For the sake of clear thinking about computing, let’s avoid the term
“cloud.”

 Dealing with the SaaSS Problem

 Only a small fraction of all web sites do SaaSS; most don’t raise the issue. But
what should we do about the ones that raise it?

 For the simple case, where you are doing your own computing on data in your
own hands, the solution is simple: use your own copy of a free software application.
Do your text editing with your copy of a free text editor such as GNU Emacs or a
free word processor. Do your photo editing with your copy of free software
such as GIMP. What if there is no free program available? A proprietary
program or SaaSS would take away your freedom, so you shouldn’t use
those. You can contribute your time or your money to development of a free

replacement.

 What about collaborating with other individuals as a group? It may be hard to
do this at present without using a server, and your group may not know how to run
its own server. If you use someone else’s server, at least don’t trust a server run by a
company. A mere contract as a customer is no protection unless you could detect a
breach and could really sue, and the company probably writes its contracts to
permit a broad range of abuses. The state can subpoena your data from the
company along with everyone else’s, as Obama has done to phone companies,
supposing the company doesn’t volunteer them like the US phone companies that
illegally wiretapped their customers for Bush. If you must use a server, use a
server whose operators give you a basis for trust beyond a mere commercial
relationship.

 However, on a longer time scale, we can create alternatives to using servers. For
instance, we can create a peer-to-peer program through which collaborators
can share data encrypted. The free software community should develop
distributed peer-to-peer replacements for important “web applications.” It may be
wise to release them under the GNU Affero GPL, since they are likely
candidates for being converted into server-based programs by someone else. [10]
The GNU Project is looking for volunteers to work on such replacements.
We also invite other free software projects to consider this issue in their
design.

 In the meantime, if a company invites you to use its server to do your own
computing tasks, don’t yield; don’t use SaaSS. Don’t buy or install “thin clients,”
which are simply computers so weak they make you do the real work on a server,
unless you’re going to use them with your server. Use a real computer and keep
your data there. Do your own computing with your own copy of a free program, for
your freedom’s sake.

 Endnotes

 [1] Please join our campaign against DRM, at DefectiveByDesign.org.

 [2] For a growing list of the ways in which surveillance has spread across industries, see
http://gnu.org/philosophy/proprietary/proprietary-surveillance.html.

 [3] Amy Webb, “Congratulations, You Found a Photo of My Daughter Online,” 12 September 2013,
http://slate.com/articles/technology/data_mine_1/2013/09/privacy_facebook_kids_don_t_post_photos_of_your_kids_on_social_media.html.

 [4] See “The JavaScript Trap” ([link]) for more information on this issue.

 [5] See “How to Choose a License for Your Own Work” ([link]) for our licensing
recommendations.

 [6] See “How Free Software and Open Source Relate as Categories of Programs,” at
http://gnu.org/philosophy/free-open-overlap.html for more information.

 [7] For the “Open Software Service Definition,” see
http://opendefinition.org/ossd/index.html.

 [8] For more information, see my article “Network Services Aren’t Free or Nonfree; They
Raise Other Issues,” at
http://gnu.org/philosophy/network-services-arent-free-or-nonfree.html.

 [9] See “The JavaScript Trap” ([link]) for more on this issue.

 [10] See “Why the Affero GPL,” at http://gnu.org/licenses/why-affero-gpl.html, for a
full explanation.

 Part VII
Part VII: Value Community and Your Freedom

 44 Avoiding Ruinous Compromises

 45 Overcoming Social Inertia

 46 Freedom or Power?

 47 Imperfection Is Not the Same as Oppression

 48 How Much Surveillance Can Democracy Withstand?

 Chapter 44
Avoiding Ruinous Compromises

Copyright © 2008, 2009, 2014, 2015 Richard Stallman
 This essay was originally published on http://gnu.org, in 2008. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)
__

 On September 27, 1983, I announced a plan to create a completely free
 operating system called GNU—for “GNU’s Not Unix.” To mark the 25th
 anniversary of the GNU system, I wrote this article to show how our community
 could avoid ruinous compromises. In addition to avoiding such compromises,
 there are many ways you can help GNU and free software. One basic way is to
 join the Free Software Foundation as an Associate Member. [1]

The free software movement aims for a social change: to make all software free [2] so
that all software users are free and can be part of a community of cooperation.
Every nonfree program gives its developer unjust power over the users. Our goal is
to put an end to that injustice.

 The road to freedom is a long road. [3] It will take many steps and many years to
reach a world in which it is normal for software users to have freedom. Some of
these steps are hard, and require sacrifice. Some of them become easier if we make
compromises with people that have different goals.

 Thus, the Free Software Foundation makes compromises—even major ones. For
instance, we made compromises in the patent provisions of version 3 of the GNU
General Public License (GNU GPL) so that major companies would contribute to
and distribute GPLv3-covered software and thus bring some patents under the
effect of these provisions.

 The Lesser GPL’s purpose is a compromise: we use it on certain chosen free
libraries to permit their use in nonfree programs because we think that legally
prohibiting this would only drive developers to proprietary libraries instead. We
accept and install code in GNU programs to make them work together with
common nonfree programs, and we document and publicize this in ways that
encourage users of the latter to install the former, but not vice versa. We support
specific campaigns we agree with, even when we don’t fully agree with the groups

behind them.

 But we reject certain compromises even though many others in our
community are willing to make them. For instance, we endorse only the
GNU/Linux distributions that have policies not to include nonfree software or lead
users to install it. [4] To endorse nonfree distributions would be a ruinous
compromise.

 Compromises are ruinous if they would work against our aims in the
long term. That can occur either at the level of ideas or at the level of
actions.

 At the level of ideas, ruinous compromises are those that reinforce the premises
we seek to change. Our goal is a world in which software users are free, but as yet
most computer users do not even recognize freedom as an issue. They have taken up
“consumer” values, which means they judge any program only on practical
characteristics such as price and convenience.

 Dale Carnegie’s classic self-help book, How to Win Friends and Influence
People, advises that the most effective way to persuade someone to do something is
to present arguments that appeal to his values. There are ways we can appeal to the
consumer values typical in our society. For instance, free software obtained
gratis can save the user money. Many free programs are convenient and
reliable, too. Citing those practical benefits has succeeded in persuading
many users to adopt various free programs, some of which are now quite
successful.

 If getting more people to use some free programs is as far as you aim to go, you
might decide to keep quiet about the concept of freedom, and focus only on the
practical advantages that make sense in terms of consumer values. That’s what the
term “open source” and its associated rhetoric do.

 That approach can get us only part way to the goal of freedom. People who use
free software only because it is convenient will stick with it only as long as it is
convenient. And they will see no reason not to use convenient proprietary programs
along with it.

 The philosophy of open source presupposes and appeals to consumer values,
and this affirms and reinforces them. That’s why we do not support open
source.

 To establish a free community fully and lastingly, we need to do more than get
people to use some free software. We need to spread the idea of judging software
(and other things) on “citizen values,” based on whether it respects users’ freedom
and community, not just in terms of convenience. Then people will not fall
into the trap of a proprietary program baited by an attractive, convenient
feature.

 To promote citizen values, we have to talk about them and show how they are
the basis of our actions. We must reject the Dale Carnegie compromise that would
influence their actions by endorsing their consumer values.

 This is not to say we cannot cite practical advantage at all—we can and we do.
It becomes a problem only when the practical advantage steals the scene and pushes
freedom into the background. Therefore, when we cite the practical advantages of
free software, we reiterate frequently that those are just additional, secondary

reasons to prefer it.

 It’s not enough to make our words accord with our ideals; our actions have to
accord with them too. So we must also avoid compromises that involve doing or
legitimizing the things we aim to stamp out.

 For instance, experience shows that you can attract some users to GNU/Linux if
you include some nonfree programs. This could mean a cute nonfree application
that will catch some user’s eye, or a nonfree programming platform such as Java [5]
(formerly) or the Flash runtime (still), or a nonfree device driver that enables
support for certain hardware models.

 These compromises are tempting, but they undermine the goal. If you distribute
nonfree software, or steer people towards it, you will find it hard to say, “Nonfree
software is an injustice, a social problem, and we must put an end to it.” And
even if you do continue to say those words, your actions will undermine
them.

 The issue here is not whether people should be able or allowed to install nonfree
software; a general-purpose system enables and allows users to do whatever they
wish. The issue is whether we guide users towards nonfree software. What they
do on their own is their responsibility; what we do for them, and what
we direct them towards, is ours. We must not direct the users towards
proprietary software as if it were a solution, because proprietary software is the
problem.

 A ruinous compromise is not just a bad influence on others. It can distort your
own values, too, through cognitive dissonance. If you have certain values, but your
actions imply other, conflicting values, you are likely to change your values or your
actions so as to resolve the contradiction. Thus, projects that argue only from
practical advantages, or direct people toward some nonfree software, nearly
always shy away from even suggesting that nonfree software is unethical.
For their participants, as well as for the public, they reinforce consumer
values. We must reject these compromises if we wish to keep our values
straight.

 If you want to move to free software without compromising the goal of freedom,
look at the FSF’s resources area, at http://www.fsf.org/resources. It lists
hardware and machine configurations that work with free software, totally free
GNU/Linux distros to install, and thousands of free software packages [6] that
work in a 100 percent free software environment. If you want to help the
community stay on the road to freedom, one important way is to publicly
uphold citizen values. When people are discussing what is good or bad, or
what to do, cite the values of freedom and community and argue from
them.

 A road that lets you go faster is not better if it leads to the wrong place.
Compromise is essential to achieve an ambitious goal, but beware of compromises
that lead away from the goal.

 Endnotes

 [1] You can support the FSF through a membership at http://my.fsf.org/join.

 [2] “Free” as in “freedom.” See [link] for the full definition of free software.

 [3] See
FSF executive director John Sullivan’s 2008 article “The Last Mile Is Always the Hardest,”
at http://fsf.org/bulletin/2008/spring/the-last-mile-is-always-the-hardest, for his
perspective on this issue.

 [4] You can find the full list of the Free System Distribution Guidelines (GNU FSDG) at
http://gnu.org/philosophy/free-system-distribution-guidelines.html.

 [5] See http://gnu.org/philosophy/java-trap.html for more on this.

 [6] The Free Software Directory, at http://directory.fsf.org, lists all the free software
we know about.

 Chapter 45
Overcoming Social Inertia

 Copyright © 2007, 2009 Richard Stallman
 This essay was originally published on http://gnu.org, in 2007. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Almost
two decades have passed since the combination of GNU and Linux first made it
possible to use a PC in freedom. We have come a long way since then. Now you can
even buy a laptop with GNU/Linux preinstalled from more than one hardware
vendor—although the systems they ship are not entirely free software. So what
holds us back from total success?

 The main obstacle to the triumph of software freedom is social inertia. It exists
in many forms, and you have surely seen some of them. Examples include devices
that only work on Windows and commercial web sites accessible only with
Windows. If you value short-term convenience instead of freedom, you might
consider these reason enough to use Windows. Most companies currently run
Windows, so students who think short-term want to learn how to use it and
ask their schools to teach it. Schools teach Windows, produce graduates
that are used to using Windows, and this encourages businesses to use
Windows.

 Microsoft actively nurtures this inertia: it encourages schools to inculcate
dependency on Windows, and contracts to set up web sites that then turn out to
work only with Internet Explorer.

 A few years ago, Microsoft ads argued that Windows was cheaper to run than
GNU/Linux. Their comparisons were debunked, but it is worth noting the deeper
flaw in their argument, the implicit premise which cites a form of social inertia:
“Currently, more technical people know Windows than GNU/Linux.” People who
value their freedom would not give it up to save money, but many business
executives believe ideologically that everything they possess, even their freedom,
should be for sale.

 Social inertia consists of people who have given in to social inertia. When you
surrender to social inertia, you become part of the pressure it exerts on others;
when you resist it, you reduce it. We conquer social inertia by identifying it, and
resolving not to be part of it.

 Here a weakness holds our community back: most GNU/Linux users have never
even heard the ideas of freedom that motivated the development of GNU, so they
still judge matters based on short-term convenience rather than on their freedom.
This makes them vulnerable to being led by the nose by social inertia, so that they
become part of the inertia.

 To build our community’s strength to resist, we need to talk about free software
and freedom—not merely about the practical benefits that open source supporters

cite. As more people recognize what they need to do to overcome the inertia, we will
make more progress.

 Endnotes

 [1] You can support the FSF through a membership at http://my.fsf.org/join.

 [2] “Free” as in “freedom.” See [link] for the full definition of free software.

 [3] See
FSF executive director John Sullivan’s 2008 article “The Last Mile Is Always the Hardest,”
at http://fsf.org/bulletin/2008/spring/the-last-mile-is-always-the-hardest, for his
perspective on this issue.

 [4] You can find the full list of the Free System Distribution Guidelines (GNU FSDG) at
http://gnu.org/philosophy/free-system-distribution-guidelines.html.

 [5] See http://gnu.org/philosophy/java-trap.html for more on this.

 [6] The Free Software Directory, at http://directory.fsf.org, lists all the free software
we know about.

 Chapter 46
Freedom or Power?

 Copyright © 2001, 2009 Bradley M. Kuhn and Richard Stallman
 This essay was originally published on http://gnu.org, in 2001. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

Verbatim copying and distribution of this entire chapter are permitted worldwide, without royalty,
in any medium, provided this notice is preserved.

Written
by Bradley M. Kuhn and Richard Stallman.

The love of liberty is the love of others; the love of power is the love of
ourselves.

 —William Hazlitt

In the free software movement, we stand for freedom for the users of software.
We formulated our views by looking at what freedoms are necessary for a
good way of life, and permit useful programs to foster a community of
goodwill, cooperation, and collaboration. Our criteria for free software [1] specify
the freedoms that a program’s users need so that they can cooperate in a
community.

 We stand for freedom for programmers as well as for other users. Most
of us are programmers, and we want freedom for ourselves as well as for
you. But each of us uses software written by others, and we want freedom
when using that software, not just when using our own code. We stand for
freedom for all users, whether they program often, occasionally, or not at
all.

 However, one so-called freedom that we do not advocate is the “freedom to
choose any license you want for software you write.” We reject this because it is
really a form of power, not a freedom.

 This oft overlooked distinction is crucial. Freedom is being able to make
decisions that affect mainly you; power is being able to make decisions that affect
others more than you. If we confuse power with freedom, we will fail to uphold real
freedom.

 Making a program proprietary is an exercise of power. Copyright law today
grants software developers that power, so they and only they choose the rules to
impose on everyone else—a relatively small number of people make the basic
software decisions for all users, typically by denying their freedom. When users lack
the freedoms that define free software, they can’t tell what the software is doing,
can’t check for back doors, can’t monitor possible viruses and worms, can’t
find out what personal information is being reported (or stop the reports,
even if they do find out). If it breaks, they can’t fix it; they have to wait
for the developer to exercise its power to do so. If it simply isn’t quite
what they need, they are stuck with it. They can’t help each other improve

it.

 Proprietary software developers are often businesses. We in the free software
movement are not opposed to business, but we have seen what happens when a
software business has the “freedom” to impose arbitrary rules on the users of
software. Microsoft is an egregious example of how denying users’ freedoms can
lead to direct harm, but it is not the only example. Even when there is no
monopoly, proprietary software harms society. A choice of masters is not
freedom.

 Discussions of rights and rules for software have often concentrated on the
interests of programmers alone. Few people in the world program regularly, and
fewer still are owners of proprietary software businesses. But the entire developed
world now needs and uses software, so software developers now control the way it
lives, does business, communicates, and is entertained. The ethical and political
issues are not addressed by the slogan of “freedom of choice (for developers
only).”

 If “code is law,” [2] then the real question we face is: who should control the code
you use—you, or an elite few? We believe you are entitled to control the software
you use, and giving you that control is the goal of free software.

 We believe you should decide what to do with the software you use;
however, that is not what today’s law says. Current copyright law places
us in the position of power over users of our code, whether we like it or
not. The ethical response to this situation is to proclaim freedom for each
user, just as the Bill of Rights was supposed to exercise government power
by guaranteeing each citizen’s freedoms. That is what the GNU General
Public License is for: it puts you in control of your usage of the software
while protecting you from others who would like to take control of your
decisions. [3]

 As more and more users realize that code is law, and come to feel that they too
deserve freedom, they will see the importance of the freedoms we stand for, just as
more and more users have come to appreciate the practical value of the free
software we have developed.

 Endnotes

 [1] See [link] for the full list of these criteria.

 [2] William J. Mitchell, City of Bits: Space, Place, and the Infobahn (Cambridge, Mass.:
MIT Press, 1995), p. 111, as quoted by Lawrence Lessig in Code and Other Laws of
Cyberspace, Version 2.0 (New York, NY: Basic Books, 2006), p. 5.

 [3] See “Why Copyleft?” ([link]) for more on this issue.

 Chapter 47
Imperfection Is Not the Same as Oppression

 Copyright © 2014 Free Software Foundation, Inc.
 This version of this essay is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

 When a free program lacks capabilities that users want, that is unfortunate; we
urge people to add what is missing. Some would go further and claim that a
program is not even free software if it lacks certain functionality—that it denies
freedom 0 (the freedom to run the program as you wish) to users or uses that it
does not support. This argument is misguided because it is based on identifying
capacity with freedom, and imperfection with oppression.

 Each program inevitably has certain functionalities and lacks others that might
be desirable. There are some jobs it can do, and others it can’t do without further
work. This is the nature of software.

 The absence of key functionality can mean certain users find the program totally
unusable. For instance, if you only understand graphical interfaces, a command line
program may be impossible for you to use. If you can’t see the screen, a
program without a screen reader may be impossible for you to use. If you
speak only Greek, a program with menus and messages in English may be
impossible for you to use. If your programs are written in Ada, a C compiler is
impossible for you to use. To overcome these barriers yourself is unreasonable to
demand of you. Free software really ought to provide the functionality you
need.

 Free software really ought to provide it, but the lack of that feature
does not make the program nonfree, because it is an imperfection, not
oppression.

 Making a program nonfree is an injustice committed by the developer that
denies freedom to whoever uses it. The developer deserves condemnation for this. It
is crucial to condemn that developer, because nobody else can undo the injustice as
long as the developer continues to do it. We can, and do, try to rescue the victims
by developing a free replacement, but we can’t make the nonfree program
free.

 Developing a free program without adding a certain important feature is not
doing wrong to anyone. Rather, it’s doing some good but not all the good that
people need. Nobody in particular deserves condemnation for not developing the
missing feature, since any capable person could do it. It would be ungrateful, as well
as self-defeating, to single out the free program’s authors for blame for not having
done some additional work.

 What we can do is state that completing the job calls for doing some additional
work. That is constructive because it helps us convince someone to do that
work.

 If you think a certain extension in a free program is important, please
push for it in the way that respects our contributors. Don’t criticize the
people who contributed the useful code we have. Rather, look for a way to
complete the job. You can urge the program’s developers to turn their
attention to the missing feature when they have time for more work. You can
offer to help them. You can recruit people or raise funds to support the
work.

 Endnotes

 [1] See [link] for the full list of these criteria.

 [2] William J. Mitchell, City of Bits: Space, Place, and the Infobahn (Cambridge, Mass.:
MIT Press, 1995), p. 111, as quoted by Lawrence Lessig in Code and Other Laws of
Cyberspace, Version 2.0 (New York, NY: Basic Books, 2006), p. 5.

 [3] See “Why Copyleft?” ([link]) for more on this issue.

 Chapter 48
How Much Surveillance Can Democracy Withstand?

 Copyright © 2015 Richard Stallman
 A version of this article was first published on the Wired web site under the same title (Wired, 14 October 2013,
http://www.wired.com/opinion/2013/10/a-necessary-evil-what-it-takes-for-democracy-to-survive-surveillance).
This version is part of Free Software, Free Society: Selected Essays of Richard M. Stallman,
3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

Thanks
to Edward Snowden’s disclosures, we know that the current level of general
surveillance in society is incompatible with human rights. The repeated harassment
and prosecution of dissidents, sources, and journalists in the US and elsewhere
provides confirmation. We need to reduce the level of general surveillance, but how
far? Where exactly is the maximum tolerable level of surveillance, which we must
ensure is not exceeded? It is the level beyond which surveillance starts to interfere
with the functioning of democracy, in that whistleblowers (such as Snowden) are
likely to be caught.

 Faced with government secrecy, we the people depend on whistleblowers to tell
us what the state is doing. [1] However, today’s surveillance intimidates potential
whistleblowers, which means it is too much. To recover our democratic control over
the state, we must reduce surveillance to the point where whistleblowers know they
are safe.

 Using free/libre software, as I’ve advocated for 30 years, is the first step in
taking control of our digital lives, and that includes preventing surveillance. We
can’t trust nonfree software; the NSA uses [2] and even creates [3] security weaknesses in
nonfree software to invade our own computers and routers. Free software gives us
control of our own computers, but that won’t protect our privacy once we set foot
on the internet. [4]

 Bipartisan legislation to “curtail the domestic surveillance powers” [5] in the US
is being drawn up, but it relies on limiting the government’s use of our
virtual dossiers. That won’t suffice to protect whistleblowers if “catching the
whistleblower” is grounds for access sufficient to identify him or her. We need to go
further.

 The Upper Limit on Surveillance in a Democracy

 If whistleblowers don’t dare reveal crimes and lies, we lose the last shred of
effective control over our government and institutions. That’s why surveillance that
enables the state to find out who has talked with a reporter is too much
surveillance—too much for democracy to endure.

 An unnamed US government official ominously told journalists in 2011 that the
US would not subpoena reporters because “We know who you’re talking
to.” [6] Sometimes journalists’ phone call records are subpoenaed [7] to find
this out, but Snowden has shown us that in effect they subpoena all the
phone call records of everyone in the US, all the time, from Verizon [8] and
from other companies too. [9] Opposition and dissident activities need
to keep secrets from states that are willing to play dirty tricks on them.
The ACLU has demonstrated the US government’s systematic practice of
infiltrating peaceful dissident groups [10] on the pretext that there might be
terrorists among them. The point at which surveillance is too much is the point
at which the state can find who spoke to a known journalist or a known
dissident.

 Information, Once Collected, Will Be Misused

 When people recognize that the level of general surveillance is too high, the first
response is to propose limits on access to the accumulated data. That sounds nice,
but it won’t fix the problem, not even slightly, even supposing that the
government obeys the rules. (The NSA has misled the FISA court, which
said it was unable to effectively hold the NSA accountable.) [11] Suspicion of
a crime will be grounds for access, so once a whistleblower is accused of
“espionage,” finding the “spy” will provide an excuse to access the accumulated
material.

 In addition, the state’s surveillance staff will misuse the data for personal
reasons. Some NSA agents used US surveillance systems to track their
lovers—past, present, or wished-for—in a practice called “LOVEINT.” [12] The
NSA says it has caught and punished this a few times; we don’t know how
many other times it wasn’t caught. But these events shouldn’t surprise us,

because police have long used their access to driver’s license records to
track down someone attractive, a practice known as “running a plate for a
date.” [13]

 Surveillance data will always be used for other purposes, even if this is
prohibited. Once the data has been accumulated and the state has the possibility of
access to it, it can misuse that data in dreadful ways, as shown by examples from
Europe [14] and the US. [15]

 Personal data collected by the state is also likely to be obtained by outside
crackers that break the security of the servers, even by crackers working for hostile
states. [16]

 Governments can easily use massive surveillance capability to subvert democracy
directly. [17]

 Total surveillance accessible to the state enables the state to launch a massive
fishing expedition against any person. To make journalism and democracy
safe, we must limit the accumulation of data that is easily accessible to the
state.

 Robust Protection for Privacy Must Be Technical

 The Electronic Frontier Foundation and other organizations propose a set of
legal principles designed to prevent the abuses of massive surveillance. [18] These
principles include, crucially, explicit legal protection for whistleblowers; as a
consequence, they would be adequate for protecting democratic freedoms—if
adopted completely and enforced without exception forever.

 However, such legal protections are precarious: as recent history shows,
they can be repealed (as in the FISA Amendments Act), suspended, or
ignored. [19]

 Meanwhile, demagogues will cite the usual excuses as grounds for total
surveillance; any terrorist attack, even one that kills just a handful of people, can be
hyped to provide an opportunity.

 If limits on access to the data are set aside, it will be as if they had never
existed: years’ worth of dossiers would suddenly become available for misuse by the
state and its agents and, if collected by companies, for their private misuse as well.
If, however, we stop the collection of dossiers on everyone, those dossiers won’t
exist, and there will be no way to compile them retroactively. A new illiberal regime
would have to implement surveillance afresh, and it would only collect data starting
at that date. As for suspending or momentarily ignoring this law, the idea would
hardly make sense.

 First, Don’t Be Foolish

 To have privacy, you must not throw it away: the first one who has to protect
your privacy is you. Avoid identifying yourself to web sites, contact them with Tor,
and use browsers that block the schemes they use to track visitors. Use the GNU
Privacy Guard to encrypt the contents of your email. Pay for things with
cash.

 Keep your own data; don’t store your data in a company’s “convenient” server.
It’s safe, however, to entrust a data backup to a commercial service, provided you
put the files in an archive and encrypt the whole archive, including the names
of the files, with free software on your own computer before uploading
it.

 For privacy’s sake, you must avoid nonfree software since, as a consequence
of giving others control of your computing, it is likely to spy on you. [20]
Avoid service as a software substitute; [21] as well as giving others control of
your computing, it requires you to hand over all the pertinent data to the
server.

 Protect your friends’ and acquaintances’ privacy, too. Don’t give out
their personal information [22] except how to contact them, and never give
any web site your list of email or phone contacts. Don’t tell a company
such as Facebook anything about your friends that they might not wish to
publish in a newspaper. Better yet, don’t be used by Facebook at all. Reject
communication systems that require users to give their real names, even if you are
going to give yours, since they pressure other people to surrender their
privacy.

 Self-protection is essential, but even the most rigorous self-protection is
insufficient to protect your privacy on or from systems that don’t belong to you.
When we communicate with others or move around the city, our privacy depends on
the practices of society. We can avoid some of the systems that surveil our
communications and movements, but not all of them. Clearly, the better solution is
to make all these systems stop surveilling people other than legitimate
suspects.

 We Must Design Every System for Privacy

 If we don’t want a total surveillance society, we must consider surveillance a
kind of social pollution, and limit the surveillance impact of each new digital system
just as we limit the environmental impact of physical construction.

 For example: “smart” meters for electricity are touted for sending the power
company moment-by-moment data about each customer’s electric usage, including
how usage compares with users in general. This is implemented based on general
surveillance, but does not require any surveillance. It would be easy for the power

company to calculate the average usage in a residential neighborhood by dividing
the total usage by the number of subscribers, and send that to the meters. Each
customer’s meter could compare her usage, over any desired period of time,
with the average usage pattern for that period. The same benefit, with no
surveillance!

 We need to design such privacy into all our digital systems.

 Remedy for Collecting Data: Leaving It Dispersed

 One way to make monitoring safe for privacy is to keep the data dispersed and
inconvenient to access. Old-fashioned security cameras were no threat to privacy. [23]
The recording was stored on the premises, and kept for a few weeks at most.
Because of the inconvenience of accessing these recordings, it was never done
massively; they were accessed only in the places where someone reported a crime. It
would not be feasible to physically collect millions of tapes every day and watch
them or copy them.

 Nowadays, security cameras have become surveillance cameras: they are
connected to the internet so recordings can be collected in a data center and saved
forever. This is already dangerous, but it is going to get worse. Advances in face
recognition may bring the day when suspected journalists can be tracked on the
street all the time to see who they talk with.

 Internet-connected cameras often have lousy digital security themselves, so
anyone could watch what the camera sees. [24] To restore privacy, we should ban the
use of internet-connected cameras aimed where and when the public is admitted,
except when carried by people. Everyone must be free to post photos and video
recordings occasionally, but the systematic accumulation of such data on the
internet must be limited.

 Remedy for Internet Commerce Surveillance

 Most data collection comes from people’s own digital activities. Usually the data
is collected first by companies. But when it comes to the threat to privacy and
democracy, it makes no difference whether surveillance is done directly by the state
or farmed out to a business, because the data that the companies collect is
systematically available to the state.

 The NSA, through PRISM, has gotten into the databases of many large internet
corporations. [25] AT&T has saved all its phone call records since 1987 and makes
them available to the DEA [26] to search on request. Strictly speaking, the US
government does not possess that data, but in practical terms it may as well possess

it.

 The goal of making journalism and democracy safe therefore requires that we
reduce the data collected about people by any organization, not just by the state.
We must redesign digital systems so that they do not accumulate data about their
users. If they need digital data about our transactions, they should not be allowed
to keep them more than a short time beyond what is inherently necessary for their
dealings with us.

 One of the motives for the current level of surveillance of the internet is that
sites are financed through advertising based on tracking users’ activities and
propensities. This converts a mere annoyance—advertising that we can learn to
ignore—into a surveillance system that harms us whether we know it or not.
Purchases over the internet also track their users. And we are all aware that
“privacy policies” are more excuses to violate privacy than commitments to uphold
it.

 We could correct both problems by adopting a system of anonymous
payments—anonymous for the payer, that is. (We don’t want the payee to dodge
taxes.) Bitcoin is not anonymous, [27] though there are efforts to develop ways to pay
anonymously with Bitcoin. However, technology for digital cash was first developed
in the 1980s; [28] we need only suitable business arrangements, and for the state not to
obstruct them.

 A further threat from sites’ collection of personal data is that security breakers
might get in, take it, and misuse it. This includes customers’ credit card details. An
anonymous payment system would end this danger: a security hole in the site can’t
hurt you if the site knows nothing about you.

 Remedy for Travel Surveillance

 We must convert digital toll collection to anonymous payment (using digital
cash, for instance). License-plate recognition systems recognize all license plates,
and the data can be kept indefinitely; [29] they should be required by law to notice
and record only those license numbers that are on a list of cars sought by court
orders. A less secure alternative would record all cars locally but only for a
few days, and not make the full data available over the internet; access to
the data should be limited to searching for a list of court-ordered license
numbers.

 The US “no-fly” list must be abolished because it is punishment without
trial. [30]

 It is acceptable to have a list of people whose person and luggage will be
searched with extra care, and anonymous passengers on domestic flights
could be treated as if they were on this list. It is also acceptable to bar
non-citizens, if they are not permitted to enter the country at all, from
boarding flights to the country. This ought to be enough for all legitimate

purposes.

 Many mass transit systems use some kind of smart cards or RFIDs for payment.
These systems accumulate personal data: if you once make the mistake of
paying with anything but cash, they associate the card permanently with
your name. Furthermore, they record all travel associated with each card.
Together they amount to massive surveillance. This data collection must be
reduced.

 Navigation services do surveillance: the user’s computer tells the map service the
user’s location and where the user wants to go; then the server determines the route
and sends it back to the user’s computer, which displays it. Nowadays, the server
probably records the user’s locations, since there is nothing to prevent it.
This surveillance is not inherently necessary, and redesign could avoid it:
free/libre software in the user’s computer could download map data for
the pertinent regions (if not downloaded previously), compute the route,
and display it, without ever telling anyone where the user is or wants to
go.

 Systems for borrowing bicycles, etc., can be designed so that the borrower’s
identity is known only inside the station where the item was borrowed. Borrowing
would inform all stations that the item is “out,” so when the user returns it at any
station (in general, a different one), that station will know where and when that
item was borrowed. It will inform the other station that the item is no longer
“out.” It will also calculate the user’s bill, and send it (after waiting some
random number of minutes) to headquarters along a ring of stations, so that
headquarters would not find out which station the bill came from. Once this
is done, the return station would forget all about the transaction. If an
item remains “out” for too long, the station where it was borrowed can
inform headquarters; in that case, it could send the borrower’s identity
immediately.

 Remedy for Communications Dossiers

 Internet service providers and telephone companies keep extensive data on their
users’ contacts (browsing, phone calls, etc.). With mobile phones, they also record
the user’s physical location. [31] They keep these dossiers for a long time: over 30
years, in the case of AT&T. Soon they will even record the user’s body
activities. [32] It appears that the NSA collects cell phone location data in
bulk. [33]

 Unmonitored communication is impossible where systems create such dossiers.
So it should be illegal to create or keep them. ISPs and phone companies must not
be allowed to keep this information for very long, in the absence of a court order to
surveil a certain party.

 This solution is not entirely satisfactory, because it won’t physically stop

the government from collecting all the information immediately as it is
generated—which is what the US does with some or all phone companies. [34] We
would have to rely on prohibiting that by law. However, that would be better than
the current situation, where the relevant law (the PAT RIOT Act) does not clearly
prohibit the practice. In addition, if the government did resume this sort of
surveillance, it would not get data about everyone’s phone calls made prior to that
time.

 For privacy about who you exchange email with, a simple partial solution is
for you and others to use email services in a country that would never
cooperate with your own government, and which communicate with each
other using encryption. However, Ladar Levison (owner of the mail service
Lavabit that US surveillance sought to corrupt completely) has a more
sophisticated idea for an encryption system through which your email service would
know only that you sent mail to some user of my email service, and my
email service would know only that I received mail from some user of your
email service, but it would be hard to determine that you had sent mail to
me.

 But Some Surveillance Is Necessary

 For the state to find criminals, it needs to be able to investigate specific crimes,
or specific suspected planned crimes, under a court order. With the internet, the
power to tap phone conversations would naturally extend to the power to tap
internet connections. This power is easy to abuse for political reasons, but it is also
necessary. Fortunately, this won’t make it possible to find whistleblowers after the
fact, if (as I recommend) we prevent digital systems from accumulating massive
dossiers before the fact.

 Individuals with special state-granted power, such as police, forfeit their right to
privacy and must be monitored. (In fact, police have their own jargon term for
perjury, “testilying,” [35] since they do it so frequently, particularly about protesters
and photographers. [36]) One city in California that required police to wear video
cameras all the time found their use of force fell by 60 percent. [37] The ACLU is in
favor of this.

 Corporations are not people, and not entitled to human rights. [38] It is
legitimate to require businesses to publish the details of processes that might
cause chemical, biological, nuclear, fiscal, computational (e.g., DRM [39]) or
political (e.g., lobbying) hazards to society, to whatever level is needed
for public well-being. The danger of these operations (consider the BP oil
spill, the Fukushima meltdowns, and the 2008 fiscal crisis) dwarfs that of
terrorism.

 However, journalism must be protected from surveillance even when it is carried
out as part of a business.

 Digital technology has brought about a tremendous increase in the level of
surveillance of our movements, actions, and communications. It is far more than we
experienced in the 1990s, and far more than people behind the Iron Curtain
experienced in the 1980s, [40] and proposed legal limits on state use of the
accumulated data would not alter that.

 Companies are designing even more intrusive surveillance. Some project that
pervasive surveillance, hooked to companies such as Facebook, could have deep
effects on how people think. [41] Such possibilities are imponderable; but the threat to
democracy is not speculation. It exists and is visible today.

 Unless we believe that our free countries previously suffered from a grave
surveillance deficit, and ought to be surveilled more than the Soviet Union and East
Germany were, we must reverse this increase. That requires stopping the
accumulation of big data about people.

 Endnotes

 [1] Maira Sutton, “We’re TPP Activists: Reddit Asked Us Everything,” 21 November 2013,
https://www.eff.org/deeplinks/2013/11/reddit-tpp-ama.

 [2] Glyn Moody, “How Can Any Company Ever Trust Microsoft Again?” 17 June 2013,
http://www.computerworlduk.com/blogs/open-enterprise/how-can-any-company-ever-trust-microsoft-again-3569376/.

 [3] James Ball, Julian Borger and Glenn Greenwald, “Revealed:
How US and UK Spy Agencies Defeat Internet Privacy and Security,” 6 September 2013,
http://theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security.

 [4] Bruce Schneier, “Want to Evade NSA Spying? Don’t Connect to the Internet,”
7 October 2013, http://www.wired.com/2013/10/149481/.

 [5] Dan Roberts, “Patriot Act Author Prepares Bill to Put NSA Bulk Collection ’Out of
Business,’” 10 October 2013, http://theguardian.com/world/2013/oct/10/nsa-surveillance-patriot-act-author-bill.

 [6] Lucy Dalglish, “Lessons from Wye River,” The News Media & the Law (Summer 2011):
p. 1, http://www.rcfp.org/browse-media-law-resources/news-media-law/news-media-and-law-summer-2011/lessons-wye-river.

 [7] Washington Agencies, “Yemen leak: former FBI man admits passing information to
Associated Press,” 24 September 2013, http://www.theguardian.com/media/2013/sep/24/yemen-leak-sachtleben-guilty-associated-press.

 [8] See “Verizon forced to hand over telephone data—full court ruling” (6 June 2013), at
http://www.theguardian.com/world/interactive/2013/jun/06/verizon-telephone-data-court-order,
for the Foreign Intelligence Surveillance Court under which the US government “is collecting
the phone records of millions of US customers of Verizon.”

 [9] Siobhan Gorman, Evan Perez, and Janet Hook, “NSA Data-Mining Digs into Networks
Beyond Verizon,” 7 June 2013, http://www.marketwatch.com/story/nsa-data-mining-digs-into-networks-beyond-verizon-2013-06-07.

 [10] ACLU, “Policing
Free Speech: Police Surveillance And Obstruction of First Amendment-Protected Activity,”
29 June 2010, https://www.aclu.org/files/assets/Spyfiles_2_0.pdf.

 [11] David Kravets, Kim Zetter, Kevin Poulsen, “NSA Illegally Gorged on U.S. Phone Records
for Three Years,” 10 September 2013, http://www.wired.com/2013/09/nsa-violations/.

 [12] Adam Gabbatt and agencies, “NSA Analysts ‘Wilfully Violated’ Surveillance Systems,
Agency Admits,” 24 August 2013, http://theguardian.com/world/2013/aug/24/nsa-analysts-abused-surveillance-systems.

 [13] M. L. Elrick, “Cops Tap Database to Harass, Intimidate,” 31 July 2001,
http://sweetliberty.org/issues/privacy/lein1.htm#VeQiuxcpDow.

 [14] Rick Falkvinge, “Collected Personal Data Will Always Be Used against the Citizens,”
17 March 2012, http://falkvinge.net/2012/03/17/collected-personal-data-will-always-be-used-against-the-citizens/.

 [15] Consider, for instance, the US internment of Japanese Americans during WWII.

 [16] Mike Masnick, “Second OPM Hack Revealed: Even Worse Than the First,” 12 June 2015,
https://www.techdirt.com/articles/20150612/16334231330/second-opm-hack-revealed-even-worse-than-first.shtml.

 [17] Joanna Berendt, “Macedonia Government Is Blamed for Wiretapping Scandal,” 21 June 2015,
http://www.nytimes.com/2015/06/22/world/europe/macedonia-government-is-blamed-for-wiretapping-scandal.html?_r=0.

 [18] “International Principles on the Application of Human Rights to Communications
Surveillance,” last modified May 2014, https://en.necessaryandproportionate.org/text.

 [19] Eric Lichtblau and James Risen, “Officials Say U.S. Wiretaps Exceeded Law,”
15 April 2009, http://nytimes.com/2009/04/16/us/16nsa.html.

 [20] For decades, the free software movement has been denouncing the abusive surveillance
machine of proprietary software companies such as Microsoft and Apple. For a growing list
of the ways in which surveillance has spread across industries, not only in the software
business, but also in the hardware and—away from the keyboard—in the mobile computing
industry, in the office, at home, in transportation systems, and in the classroom, see
http://gnu.org/philosophy/proprietary/proprietary-surveillance.html.

 [21] See “Who Does That Server Really Serve?” ([link]) for more information on this issue.

 [22] Nicole Perlroth, “In Cybersecurity, Sometimes the Weakest Link Is a Family Member,”
21 May 2014, http://bits.blogs.nytimes.com/2014/05/21/in-cybersecurity-sometimes-the-weakest-link-is-a-family-member/.

 [23]

 I assume here that the security camera points at the inside of a store, or at the street.
Any camera pointed at someone’s private space by someone else violates privacy, but that

is another issue.

 [24] Ms. Smith, “CIA Wants to Spy On You through Your Appliances,” 18 March 2012,
http://networkworld.com/article/2221934/microsoft-subnet/cia-wants-to-spy-on-you-through-your-appliances.html.

 [25] Jon Queally, “Latest Docs Show Financial Ties between NSA and Internet Companies,”
23 August 2013, http://www.commondreams.org/news/2013/08/23/latest-docs-show-financial-ties-between-nsa-and-internet-companies.

 [26] Scott Shane and Colin Moynihan, “Drug Agents Use Vast Phone Trove, Eclipsing
N.S.A.’s,” 1 September 2013, http://www.nytimes.com/2013/09/02/us/drug-agents-use-vast-phone-trove-eclipsing-nsas.html?_r=0.

 [27] Dan Kaminsky, “Let’s Cut through the Bitcoin Hype: A Hacker-Entrepreneur’s Take,”
3 May 2013, http://wired.com/2013/05/lets-cut-through-the-bitcoin-hype/.

 [28] Steven Levy, “E-Money (That’s What I Want),” Wired, 2.12 (December 1994),
http://archive.wired.com/wired/archive/2.12/emoney_pr.html.

 [29] Richard Bilton, “Camera Grid to Log Number Plates,” last updated on 22 May 2009,
http://news.bbc.co.uk/2/hi/programmes/whos_watching_you/8064333.stm.

 [30] Nusrat Choudhury, “Victory! Federal Court Recognizes Constitutional Rights of Americans
on the No-Fly List,” 29 August 2013, https://www.aclu.org/blog/victory-federal-court-recognizes-constitutional-rights-americans-no-fly-list.

 [31] Kai Biermann, “Betrayed by Our Own Data,” 26 March 2011,
http://www.zeit.de/digital/datenschutz/2011-03/data-protection-malte-spitz.

 [32] Sara M. Watson, “The Latest Smartphones Could Turn Us All into Activity Trackers,”
10 October 2013, http://wired.com/2013/10/the-trojan-horse-of-the-latest-iphone-with-the-m7-coprocessor-we-all-become-qs-activity-trackers/.

 [33] Patrick
Toomey, “It Sure Sounds Like the NSA Is Tracking Our Locations,” 30 September 2013,
https://aclu.org/blog/it-sure-sounds-nsa-tracking-our-locations.

 [34] Glenn Greenwald, “NSA Collecting Phone Records of Millions of Verizon Customers
Daily,” 6 June 2013, http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order.

 [35] See, for instance, the articles “Testilying: Cops Are Liars Who Get Away with Perjury”
(Nick Malinowski, 3 February 2013, http://vice.com/read/testilying-cops-are-liars-who-get-away-with-perjury)
and “Detective Is Found Guilty of Planting Drugs” (Tim Stelloh, 1 November 2011, http://nytimes.com/2011/11/02/nyregion/brooklyn-detective-convicted-of-planting-drugs-on-innocent-people.html?pagewanted=all&_r=0),
for examples of the extent to which this practice has been normalized.

 [36] See the Photography Is Not a Crime web site, at http://photographyisnotacrime.com/,
for more on this issue.

 [37] Kevin Drum,“Ubiquitous Surveillance, Police Edition,” 22 August 2013, http://motherjones.com/kevin-drum/2013/08/ubiquitous-surveillance-police-edition.

 [38] Public Citizen,
“Call Your Representative: Tell Her or Him to Co-Sponsor a Constitutional Amendment to
Overturn Citizens United and Restore Democracy to the People,” accessed August 2015,
http://action.citizen.org/p/dia/action3/common/public/?action_KEY=12266.

 [39] See the related section in “Words to Avoid (or User with Care)” ([link]) for more on this.

 [40] James Allworth, “Your Smartphone Works for the Surveillance State,” 7 June 2013,
https://hbr.org/2013/06/your-iphone-works-for-the-secret-police.

 [41] Evan Selinger and Brett Frischmann, “Will the Internet of Things Result in Predictable
People?” 10 August 2015, http://theguardian.com/technology/2015/aug/10/internet-of-things-predictable-people.

 Part VIII
Appendices

 A: A Note on Software

 B: Translations of “Free Software” and “Gratis Software”

 C: The Free Software Song

 A: A Note on Software

 Copyright © 2002 Richard E. Buckman and Joshua Gay
 This note was originally published in 2002, in the first edition. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/)

Written by Richard E. Buckman and Joshua Gay.

This section is intended for people who have little or no knowledge of the technical
aspects of computer science. It is not necessary to read this section to understand
the essays and speeches presented in this book; however, it may be helpful to those
readers not familiar with some of the jargon that comes with programming and
computer science.

 A computer programmer writes software, or computer programs. A program is
more or less a recipe with commands to tell the computer what to do in order to
carry out certain tasks. You are more than likely familiar with many different
programs: your Web browser, your word processor, your email client, and the
like.

 A program usually starts out as source code. This higher-level set of commands
is written in a programming language such as C or Java. After that, a tool known as
a compiler translates this to a lower-level language known as assembly language.
Another tool known as an assembler breaks the assembly code down to the final
stage of machine language—the lowest level—which the computer understands
natively.

 [image: The process of code compilation]

 For example, consider the “hello world” program, a common first program for

people learning C, which (when compiled and executed) prints “Hello World!” on
the screen. [1]

 int main(){ printf(”Hello World!”); return 0; }

 In the Java programming language the same program would be written like
this:

 public class hello { public static void main(String args[]) {
System.out.println(”Hello World!”); } }

 However, in machine language, a small section of it may look similar to
this:

 1100011110111010100101001001001010101110
0110101010011000001111001011010101111101
0100111111111110010110110000000010100100
0100100001100101011011000110110001101111
0010000001010111011011110111001001101100
0110010000100001010000100110111101101111

 The above form of machine language is the most basic representation
known as binary. All data in computers is made up of a series of 0-or-1
values, but a person would have much difficulty understanding the data. To
make a simple change to the binary, one would have to have an intimate
knowledge of how a particular computer interprets the machine language.
This could be feasible for small programs like the above examples, but any
interesting program would involve an exhausting effort to make simple
changes.

 As an example, imagine that we wanted to make a change to our “Hello
World” program written in C so that instead of printing “Hello World” in
English it prints it in French. The change would be simple; here is the new
program:

 int main() { printf(”Bonjour, monde!”); return 0; }

 It is safe to say that one can easily infer how to change the program written in
the Java programming language in the same way. However, even many programmers
would not know where to begin if they wanted to change the binary representation.
When we say “source code,” we do not mean machine language that only
computers can understand—we are speaking of higher-level languages such
as C and Java. A few other popular programming languages are C++,
Perl, and Python. Some are harder than others to understand and program

in, but they are all much easier to work with compared to the intricate
machine language they get turned into after the programs are compiled and
assembled.

 Another important concept is understanding what an operating system is. An
operating system is the software that handles input and output, memory allocation,
and task scheduling. Generally one considers common or useful programs such as
the Graphical User Interface (GUI) to be a part of the operating system. The
GNU/Linux operating system contains a both GNU and non-GNU software, and a
kernel called Linux. The kernel handles low-level tasks that applications depend
upon such as input/output and task scheduling. The GNU software comprises much
of the rest of the operating system, including GCC, a general-purpose compiler
for many languages; GNU Emacs, an extensible text editor with many,
many features; GNOME, the GNU desktop; GNU libc, a library that all
programs other than the kernel must use in order to communicate with the
kernel; and Bash, the GNU command interpreter that reads your command
lines. Many of these programs were pioneered by Richard Stallman early on
in the GNU Project and come with any modern GNU/Linux operating
system.

 It is important to understand that even if you cannot change the source code for
a given program, or directly use all these tools, it is relatively easy to find someone
who can. Therefore, by having the source code to a program you are usually given
the power to change, fix, customize, and learn about a program—this is a power
that you do not have if you are not given the source code. Source code is one of the
requirements that makes a piece of software free. The other requirements
will be found along with the philosophy and ideas behind them in this
collection.

 Endnotes

 [1] In other programming languages, such as Scheme, the Hello World program is usually not your
first program. In Scheme you often start with a program like this:

 (define (factorial n) (if (= n 0) 1 (* n (factorial (- n 1)))))

This computes the factorial of a number; that is, running (factorial 5)would output 120, which is
computed by doing 5 * 4 * 3 * 2 * 1 * 1.

 B: Translations of “Free Software” and “Gratis Software”

 Copyright © 1999, 2000, 2004, 2006–2015 Free Software Foundation, Inc.
 This version of the list is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

This
is a list of recommended unambiguous translations for the term “free software” (“free
as in freedom”) into various languages, along with translations for the term “gratis
software,” in a separate column, to show how to make the contrast. The
parenthesized phrases in Latin letters after some of the entries are transliterations
(with vowels added where relevant).

 	en, English, free software, gratis software

 	af, Afrikaans, vrye sagteware, gratis sagteware

 	ar, Arabic, [image: PIC] (barmajiyat h
 ̇ orrah)

 	be, Belarusian, [image: PIC] (svabodnae
 pragramnae zabes’pjachen’ne)

 	bg, Bulgarian, [image: PIC] (svoboden softuer),
 [image: PIC] (bezplaten softuer)

 	bn, Bengali, [image: PIC] (swadhin software)

 	ca, Catalan, programari lliure, programari gratu[image: ï]t

 	cs, Czech, svobodný software, bezplatný software

 	cy, Welsh, meddalwedd rydd

 	da, Danish, fri software or frit programmel, gratis software

 	de, German, freie Software, Gratis-Software or kostenlose Software

 	el, Greek, [image: PIC] (elefthero logismiko),
 [image: PIC] (dorean logismiko)

 	eo, Esperanto, libera programaro or programo

 	eu, Basque, software librea, doako softwarea

 	es, Spanish, software libre, software gratuito

 	et, Estonian, vaba tarkvara, tasuta tarkvara

 	fa, Persian (Farsi), [image: PIC] (narmafzar azad),
 [image: PIC] (narmafzar raygan)

 	fi, Finnish, vapaa ohjelmisto, ilmainen ohjelmisto

 	fr, French, logiciel libre, logiciel gratuit

 	ga, Irish, saorbhogearra[image: í], bogearra[image: í] saora in aisce

 	he, Hebrew, [image: PIC] (tochna chofshit), [image: PIC]
 (tochna chinamit)

 	hi, Hindi, [image: PIC] (mukt software), [image: PIC] (muft
 software)

 	hr, Croatian, slobodan softver, besplatan softver

 	hu, Hungarian, szabad szoftver, ingyenes szoftver or ingyen szoftver

 	hy, Armenian, [image: PIC] (azat tsragir/tsragrer)

 	ia, Interlingua, libere programmage or libere programmario

 	id, Indonesian, perangkat lunak bebas

 	io, Ido, libera programaro

 	is, Icelandic, frjáls hugbúnaður

 	it, Italian, software libero, software gratuito

 	ja,
 Japanese, [image: PIC] (jiyu-sofutouea), [image: PIC]
 (muryo-sofutouea)

 	ka, Georgian, [image: PIC] (tavisupali programebi),
 [image: PIC] (upaso programebi)

 	ko, Korean, [image: PIC] (ja-yu software)

 	lt, Lithuanian, laisva programinė [image: i˛]ranga, nemokama programinė [image: i˛]ranga

 	lv, Latvian, brıva programmatura, bezmaksas programmatura

 	mk, Macedonian, [image: PIC] (sloboden softver) ,
 [image: PIC] (besplaten softver)

 	ml, Malayalam, [image: PIC] (svatantrasopht¯t¯veyar),
 [image: PIC] (soujanyasopht¯t¯veyar)

 	ms, Malay, perisian bebas

 	nl, Dutch, vrije software, gratis software

 	no, Norwegian, fri programvare

 	pl, Polish, wolne oprogramowanie, darmowe oprogramowanie

 	pt, Portuguese, software livre

 	ro, Romanian, programe libere, programe gratuite

 	ru, Russian, [image: PIC] (svobodnie programmi),
 [image: PIC] (besplatnie programmi)

 	sc, Sardinian, software liberu

 	si, Sinhala, [image: PIC] (nidahas mr
̇ dukaṅga)

 	sk, Slovak, slobodný softvér

 	sl, Slovenian, prosto programje

 	sq, Albanian, software i lirë, software falas

 	sr, Serbian, [image: PIC] or slobodni softver,
 [image: PIC] or besplatni softver

 	sv, Swedish, fri programvara or fri mjukvara

 	sw, Swahili, software huru or programu huru za kompyuta

 	ta, Tamil, [image: PIC] (kat
̇t
 ̇ar¯r ¯a men¯poñal
̇),
 [image: PIC] (illavasa menporul)

 	th, Thai, [image: PIC] (sofotwerseri)

 	tl, Tagalog (Filipino), malayang software

 	tr, Turkish, özgür yazılım

 	uk, Ukrainian, [image: PIC] (vil’ne prohramne
 zabezpechennja)

 	ur, Urdu, [image: PIC] (azad software), [image: PIC] (muft
 software)

 	vi, Vietnamese, [image: PIC]

 	zh-cn, Chinese (simplified), [image: PIC] (zi-you ruan-jian),
 [image: PIC] (mian-fei ruan-jian)

 	zh-tw, Chinese (traditional), [image: PIC] (zih-yo), [image: PIC]
 (mien-fei)

 	zu, Zulu, isoftware ekhululekile

 C: The Free Software Song

 Copyright © 2010 Richard Stallman
 Richard Stallman wrote the lyrics above in 1991. This version of the score is published in Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press,
2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nd/4.0/)

The
lyrics of “The Free Software Song” are sung to the melody of the Bulgarian
folk song “Sadi moma bela loza.” To listen to a recording of the piece
accompanied by Bulgarian instruments played in traditional style, please visit
http://gnu.org/music/FreeSWSong.ogg.

[image: The free software song]

OEBPS/fsfs336x.png
Bleeus Glemalummer

OEBPS/fsfs322x.png
3x0bm 3MhmaModgdo

OEBPS/fsfs30x.png
free software

public domain software
(with source)

Soffware under
lax permissive license

copylefied software

proprietary software

‘public domain software
(without source)

software under GPL

open source software

free-download software

OEBPS/fsfs320x.png
fEVI RSP

OEBPS/fsfs337x.png
danfurIfad

OEBPS/fsfs334x.png
6ecnnaTtHn cogpTeep

OEBPS/fsfs318x.png
wquwuwn spwghp/dnpwignptin

OEBPS/fsfs323x.png

OEBPS/fsfs333x.png
cnoboanmn codpreep

OEBPS/fsfs339x.png
ey sl 5)5]

OEBPS/fsfs317x.png

OEBPS/fsfs311x.png
ol&l, Jlsle

OEBPS/fsfs31x.png
Campilec Assembler dachine

>l |2l |-

OEBPS/fsfs37x.png

OEBPS/fsfs34x.png
ceobonen codryep

OEBPS/fsfs346x.png
SESSS S e

Join us now and share the soft-ware; youll
Hoarderscan get piles of mo-ney; that
When we have e - nough free soft-ware at
Join us now and share the soft-ware; youll

= rr o lr 00

be free. Join us now and share the soft - ware;
S But theycan - not help their neigh-bors;
our call well kickout those dir - ty li-cen-ses
Join us now and share the soft - ware;

youll be free.
that's ot good._

voull be free.

OEBPS/fsfs321x.png
®30L)B>w0 3BMgHdgd0

OEBPS/fsfs340x.png
;9 aly b

OEBPS/fsfs324x.png

OEBPS/fsfs343x.png
SBUHS

OEBPS/fsfs327x.png
GecnnaTeH codTeep

OEBPS/fsfs344x.png
B

OEBPS/fsfs330x.png
ceob0aHbIE NpOrpaMMbl

OEBPS/fsfs313x.png

OEBPS/fsfs328x.png
I eTuIggemnwd

OEBPS/fsfs314x.png
nwwsin nDm

OEBPS/fsfs345x.png
e

OEBPS/fsfs36x.png
FIRT T

OEBPS/cover.png
Free Software,
Free Society

Selected Essays of Richard M. Stallman, Third Edition
Foreword by Jacob Appelbaum

OEBPS/fsfs326x.png
cnobopen codpreep

OEBPS/fsfs312x.png

OEBPS/fsfs329x.png
TUDERTETIqLHIxB

OEBPS/fsfs315x.png
nmmannm

OEBPS/fsfs331x.png
6ecnnaTHble NporpaMMsl

OEBPS/fsfs35x.png
6e3nnateH codryep

OEBPS/fsfs38x.png
£AEGBEPO AOYLOHIKS

OEBPS/fsfs341x.png
phdn mém ty do

OEBPS/fsfs310x.png
T 18l

OEBPS/fsfs32x.png

OEBPS/fsfs39x.png
Gwpedv Aoylopkéd

OEBPS/fsfs342x.png
=]zt 0

OEBPS/fsfs325x.png

OEBPS/fsfs33x.png
ceabonHae nparpamHae 3abecbnay3HcHe

OEBPS/fsfs335x.png
&L pm CwenGlummer

OEBPS/fsfs338x.png
‘BinbHe Mporpamee 3ae3nedeHAs

OEBPS/fsfs332x.png
Hawed Sagzm-a

OEBPS/fsfs316x.png

OEBPS/fsfs319x.png
BAYIFITT

